• Title/Summary/Keyword: HT-29 Cell

Search Result 391, Processing Time 0.026 seconds

Effect of Synthetic Bile Acid Derivatives on the Cell Cycle Modulation of HT -29 Human Colon Cancer Cells

  • Park, Sang-Eun;Yee, Su-Bog;Choi , Hye-Joung;Chung, Sang-Woon;Park, Hwa-Sun;Yoo, Young-Hyun;Kim, Nam-Deuk
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.246.1-246.1
    • /
    • 2002
  • We studied the effects of ursodeoxycholic acid (UDCA) and its synthetic derivatives. HS-l030 and HS-1183. and chenodeoxycholic acid (CDCA) and its synthetic derivatives, HS-1199 and HS-1200. on the human colon adenocarcinoma cell line. HT -29 (p53 mutant type). The effects on cell viability and growth were assessed by MTT assay and cell growth study. While UDCA and CDCA exhibited no significant effect, their novel derivatives inhibited the proliferation of HT-29 cell line in a concentration- and time-dependent manners. (omitted)

  • PDF

Effect of Lycopene on the Insulin-like Growth Factor-I Receptor Signaling Pathway in Human Colon Cancer HT-29 Cells (인간의 대장암 HT-29 세포주에서 라이코펜이 Insulin-like Growth Factor-I Receptor Signaling Pathway에 미치는 영향)

  • ;;;Frederick Khachik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.3
    • /
    • pp.437-443
    • /
    • 2003
  • Epidemiological data suggest that lycopene has anticancer activities in humans. Insulin-like growth factor-I receptor (IGF-IR) is a transmembrane tyrosine kinase that mediates the biological actions of IGFs and may play an active role in cancer progression. Because our previous in vitro studies have indicated lycopene inhibits HT-29 cell growth, the aim of this study was to determine whether lycopene induces apoptotic cell death and the inhibitory effect of lycopene on HT-29 cell growth is related to changes in IGF-IR levels and the receptor's intracellular signalling pathways. HT-29 cells were incubated for 4 days in serum-free medium in the presence of 0, 25, 50, or 100 $\mu$M lycopene, and the DNA fragmentation assay was performed. Cells treated with lycopene produced a distinct oligonucleosomal ladder with different sizes of DNA fragments, a typical characteristic of cells undergoing apoptosis. HT-29 cells were cultured for 4 days in serum-free medium in the presence of 0~100 $\mu$M lycopene and IGF-I (10nM) was added for 0~60 minutes immediately prior to lysate preparations. Western blot analysis of total lysates revealed that lycopene decreased the levels of IRS-1, Akt, phosphatidylinositol 3-kinase (PI3K), and IGF-IR $\beta$-subunit, and increased the levels of the IGF-IR precursor dose dependently. Lycopene also decreased IGF-I-induced phosphorylation of IGF-IR$\beta$, IRS-1 and Akt, which were, at least in part, due to decreased expression of these proteins. These results suggest that lycopene induces apoptosis of HT-29 cells by inhibiting IGF-IR signaling thereby interfering with an IGF-II-driven autocrine growth loop, which is known to exist in this cell line.

사람의 Serine palmitoryl transferase II 및 ceramidase의 promoter에 대한 연구

  • Kim, Hui-Suk;Song, Seong-Gwang;Lee, Eun-Yeol;Lee, Sang-Do;Linn, Steve;Merrill, Alfred H.
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.588-591
    • /
    • 2000
  • Serine palmitoyl transferase(SPT) and ceramidase are the key enzymes in sphingolipid biosynthesis. To study sphingolipid metabolism, we have got the 5'-upstream regions of human serine palmitoyl transferase subunit II and acid ceramidase gene by using GenomeWalker kits(Clontech Co.). Human genomic DNA was purified from HT29, human colon canser cell line by using DNAzol. We got several bands after secondary PCR and subcloned them to T7bule vector. Human SPTII promoter which we got was 2690bp but we cut it with Bgl II and vector with Bgl II and BamH I, and subcloned 1782bp to pGL2-enhancer vector and pGL2-basic vector with luciferase reporter gene. Human acid ceramidase promoter which we got were 2028bp and 1034bp and subcloned to pGL2-enhancer vector and pGL2-basic vector. We transfected these promoters to HT29 cell and assayed luciferase activity. For measuring transfection efficiency, pRL-TK vector with seapancy luciferase reproter gene was cotransfected with these promoters.

  • PDF

Effect of Ethanol Extracts of Cinnamon on the Proliferation and COX-2 Pathway in HT-29 Human Colon Cancer Cell Line (육계 에탄올 추출물이 HT-29 대장암 세포주의 성장 및 COX-2 기전에 미치는 영향)

  • Lee, Seung-Youn;Kim, Hee-Seok;Kim, Jeoung-Ok;Hwang, Sung-Wan;Hwang, Sung-Yeoun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.9
    • /
    • pp.1115-1120
    • /
    • 2006
  • The effect of cinnamon ethanol extract (CN) on HT-29 cancer cell line has been examined. CN inhibited the growth of HT-29 colon cancer cells in a concentration and time dependent manner but not the growth of CCD-112CoN normal colon cells. And CN markedly inhibited the production of $PGE_2$ and cGMP as well as the mRNA expression of COX-2. These data suggest that non toxic concentration of CN has a significant inhibition effect on the growth of HT-29 cells, probably through the inhibition of $PGE_2$ production via COX-2 inhibition, and may have value as a safe chemopreventive agent for colon cancer.

A Study on the Mechanisms by Which the Aqueous Extract of Inonotus obliquus Induces Apoptosis and Inhibits Proliferation in HT-29 Human Colon Cancer Cells (차가버섯 물추출물의 대장암세포 증식억제 및 Apoptosis 유도기전 연구)

  • Kim, Eun-Ji;Lee, Yong-Jin;Shim, Hyun-Kyung;YoonPark, Jung-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.5
    • /
    • pp.516-523
    • /
    • 2006
  • The mushroom Inonotus obliquue (IO) has been traditionally used for the treatment of gastrointestinal cancer in Russia, Poland, and most of Baltic countries. To explore the possibility that IO has chemoprevention effects, we examined whether or not the aqueous extract of IO inhibits HT-29 cell growth and investigated tile mechanism for this effect. Cells were incubated in the presence of increasing concentrations of the aqueous extract of IO. The extract substantially inhibited the viable HT-29 cell number in a dose-dependent manner and inhibited 5-bromo-2'-deoxyuridine incorporation into DNA of HT-29 cells. Annexin-V staining followed by flow cytometry revealed that the extract induced apoptosis of HT-29 cells in a dose-dependent manner. Western blot analysis of total cell lysates revealed that the extract induced cleavage of caspase-8, -9 and -3 and poly (ADP-ribose) polymerase, but did not affect the protein levels of Bax and Bcl-2. In addition, the extract dose-dependently increased the activity of caspase-8, -9 and -3. We have demonstrated that the aqueous extract of IO inhibits cell proliferation and induces apoptosis in HT-29 cells, which may be mediated by its ability to activate the caspase pathway.

Uptake of a Dipeptide by the Dipeptide Transporter in the HT-29 Intestinal Cells (HT-29 장관세포에 있는 디펩티드수송체에 의한 디펩티드의 흡수)

  • Oh, Doo-Man
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.2
    • /
    • pp.137-143
    • /
    • 1995
  • The peptide transporter can be utilized for improving the bioavailability of compounds that are poorly absorbed. Characterization of the dipeptide uptake into the human intestinal epithelial cells, HT-29 was investigated. The uptake of tritiated glycylsarcosine $([^3H]-Gly-Sar,\;0.1\;{\mu}Ci/ml)$ was measured in confluent or subconfluent HT-29, Caco-2, and Cos-7 cells. Uptake medium was the Dulbecco's Modified Eagle's Media (DMEM) adjusted to pH 6.0. Both HT-29 and Caco-2 cells expressed the dipeptide transporter significantly (p<0.005) but Cos-7 did not. Certain portions of passive uptake were observed in all three cell lines. Uptake of Gly-Sar was largest at 7 days after plating HT-29 cells with significant inhibition with 25 mM cold Gly-Sar (p<0.05). but expression ratio of the dipeptide transporter was 0.7, suggesting lower expression. The effect of pH on Gly-Sar uptake was not significant in the range of pH 6 to 8. Gly-Sar uptake was also inhibited with 50 mM carnosine, 25 mM Gly-Sar, and 35 mM cephalexin significantly (p<0.05). From above results the dipeptide transporter was expressed well in HT-29 cells and was similar to that in the small intestine, suggesting that large amounts of mRNA of the transporter from the cells can be obtained.

  • PDF

Effects of Nelumbo nucifera Root Extract on Proliferation and Apoptosis in HT-29 Human Colon Cancer Cells (연근(Nelumbo nucifera Root) 추출물의 HT-29 인체 대장암세포 증식 억제 및 사멸 효과)

  • Guon, Tae-Eun;Chung, Ha Sook
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.24 no.1
    • /
    • pp.20-27
    • /
    • 2014
  • Our study is investigated the effects of Nelumbo nucifera root extract on HT-29 colon cancer cells. The anti-proliferative effect of 70% ethanol extract from Nelumbo nucifera root on HT-29 colon cancer cells was identified based on cell viability, Hoechst 33342 nuclear staining, apoptosis analysis, Western blotting and RT-PCR analyses. In our study, Nelumbo nucifera root extract inhibited the growth of HT-29 colon cancer cells in a dose-dependent manner. Concomitant activation of the mitochondria-dependent apoptotic pathway of HT-29 colon cancer cells by Nelumbo nucifera root extract occurred via modulation of Bax and Bcl-2 expressions, which activated cleavage of caspases-3 and -9. The findings of this study indicate that Nelumbo nucifera root extract induces apoptosis in HT-29 colon cancer cells, and this phenomenon is occurs via the death receptor-mediated and mitochondria-mediated apoptotic pathways.

Effect of Snake Venom Toxin on Inhibition of Colorectal Cancer HT29 Cells Growth via Death Receptors Mediated Apoptosis

  • Shim, Yoon Seop;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.31 no.2
    • /
    • pp.87-98
    • /
    • 2014
  • Objectives : We investigated whether snake venom toxin(SVT) from Vipera lebetina turanica sensitizes HT29 human epithelial colorectal cancer cells to tumor necrosis factor(TNF)-related apoptosis-inducing ligand(TRAIL) induced apoptosis in cancer cells. Methods : Cell viability assay was used to assess the inhibitory effect of TRAIL on cell growth of HT29 human colorectal cancer cells. And 6-diamidino-2-phenylindole(DAPI), terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay(TUNEL) staining assay were used to evaluate cell-apoptosis. Western blot analysis were conducted to observe apoptosis related proteins and death receptor. To assess whether the synergized inhibitory effect of SVT and TRAIL on reactive oxygen species(ROS) generation was reversed by strong anti-oxidative agent. Results : SVT with TRAIL inhibited HT29 cell growth different from TRAIL alone. Consistent with cell growth inhibition, the expression of TRAIL receptors; Expression of death receptor(DR)4 and DR5 was significantly increased and intrinsic pro-apoptotic cleaved caspase-3, -9 was subsequently increased together with increase of Bax/Bcl-2 ratio and extrinsic pro-apototic caspase-8 was also activated. In addition, the expression of anti-apoptotic survival proteins, a marker of TRAIL resistance(eg, cFLIP, survivin, X-linked inhibitor of apoptosis protein(XIAP) and Bcl-2) was suppressed by the combination treatment of SVT and TRAIL. Pretreatment with the ROS scavenger N-acetylcysteine abolished the SVT and TRAIL-induced upregulation of DR4 and DR5 expression and expression of the intrinsic pro-apoptotic caspase-3 and-9. Conclusion : The collective results suggest that SVT facilitates TRAIL-induced apoptosis in $HT_{29}$ human epithelial colorectal cancer cells through up-regulation of the TRAIL receptors; DR4 and DR5 and consecutive induction of bilateral apoptosis via regulating apoptosis related proteins.

Potential Chemoprevention Activity of Pterostilbene by Enhancing the Detoxifying Enzymes in the HT-29 Cell Line

  • Harun, Zaliha;Ghazali, Ahmad Rohi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6403-6407
    • /
    • 2012
  • Detoxifying enzymes are present in most epithelial cells of the human gastrointestinal tract where they protect against xenobiotics which may cause cancer. Induction of examples such as glutathione S-transferase (GST) and its thiol conjugate, glutathione (GSH) as well as NAD(P)H: quinoneoxidoreductase (NQO1) facilitate the excretion of carcinogens and thus preventing colon carcinogenesis. Pterostilbene, an analogue of resveratrol, has demonstrated numerous pharmacological activities linked with chemoprevention. This study was conducted to investigate the potential of pterostilbene as a chemopreventive agent using the HT-29 colon cancer cell line to study the modulation of GST and NQO1 activities as well as the GSH level. Initially, our group, established the optimum dose of 24 hours pterostilbene treatment using MTT assays. Then, effects of pterostilbene ($0-50{\mu}M$) on GST and NQO1 activity and GSH levels were determined using GST, NQO1 and Ellman assays, respectively. MTT assay of pterostilbene ($0-100{\mu}M$) showed no cytotoxicity toward the HT-29 cell line. Treatment increased GST activity in the cell line significantly (p<0.05) at 12.5 and $25.0{\mu}M$. In addition, treatment at $50{\mu}M$ increased the GSH level significantly (p<0.05). Pterostilbene also enhanced NQO1 activity significantly (p<0.05) at $12.5{\mu}M$ and $50{\mu}M$. Hence, pterostilbene is a potential chemopreventive agent capable of modulation of detoxifiying enzyme levels in HT-29 cells.

Effects of Fucoidan, a Sulfur-Containing Polysaccharide, on Cytotoxicity and Apoptosis in HT-29 Human Colorectal Cancer Cells (함유황 다당체 Fucoidan의 인체 대장암세포(HT-29) 사멸과 Apoptosis에 미치는 영향)

  • Kim, Min Ji;Chung, Ha Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.3
    • /
    • pp.204-212
    • /
    • 2022
  • The purpose of this study was to investigate the biological activity of fucoidan, a sulfur-containing polysaccharide, on cytotoxicity and apoptosis in the human HT-29 colorectal cancer cell line using cell viability, Flow cytometry, Western blot, and RT-PCR analyses. Fucoidan inhibited the proliferation of HT-29 cells by 39.6% at a concentration of 100 ㎍/mL for 72 h. The inhibition was dose-dependent and accompanied by apoptosis. Flow cytometric analysis showed that fucoidan increased early apoptosis and late apoptosis by 65.84% and 72.09% at concentrations of 25 and 100 ㎍/mL, respectively. Analysis of the mechanism of these events indicated that fucoidan-treated cells exhibited increases in the activation of caspase-3, caspase-8, and PARP in a dose-dependent manner. These results suggest that fucoidan may inhibit the growth of human colorectal cancer cells by various apoptosis-promoting effects, as well as by apoptosis itself.