본 논문에서는 차량을 포함하고 있는 영상에서 차량의 색상을 인식하는 방법을 제안한다. 영상에서 차량의 색상 특징 벡터를 추출해 다층 신경회로망인 backpropagation 학습 알고리즘을 이용하여 차량의 색상을 인식하게 된다. backpropagation 학습 알고리즘의 입력으로 사용되는 특징벡터는 RGB와 HSI(Hue-Saturation-Intensity) 색상 모델을 이용하여 색상 특징 벡터를 구성하고 각각 신경회로망의 입력으로 사용된다. 차량의 색상 인식은 가장 많이 발견되는 차량의 색상 가운데 7가지 색상으로 흰색, 은색, 검정색, 빨강색, 노란색, 파란색, 초록색으로 인식한다. 제안한 방법의 성능평가를 위해 차량을 포함하고 있는 영상을 이용하여 색상 인식 성능을 실험 하였다.
본 논문에서는 아바타를 자동으로 생성하기 위한 컬러 이미지 상에서의 얼굴, 눈, 입술 윤곽선 검출 기법을 제안하였다. 제안된 기법에서는 먼저 조명의 영향을 최대한 배제하기 위하여 HSI 색상 모델을 사용하였고 I 정보를 제외한 HS 평면상에서 피부색을 정의하고 이를 이용하여 입력된 이미지로부터 피부 영역을 검출하였다. 그리고 변형가능 템플릿과 유전자 알고리즘을 이용하여 얼굴, 눈, 입의 윤곽선을 검출하였다. 여기서 변형가능 템플릿은 B-spline 곡선과 컨트롤 포인트 벡터로 이루어지며, 이것은 다양한 얼굴, 눈, 입술 모양의 표현을 가능하게 한다. 또 유전자 알고리즘은 자연계의 진화와 선택원리를 응용한 매우 효율적인 탐색 알고리즘이다 다음으로, 검출된 얼굴과 각 요소들의 윤곽선과 퍼지 C-평균 군집화를 이용하여 아바타를 생성하게 된다. 퍼지 C-평균 군집화는 얼굴색을 일정한 수로 단순화하는 과정에서 사용하였다. 결과적으로, 이와 같은 기법을 이용하여 기존의 정해진 이미지를 가지고 표현하던 아바타와는 달리 사용자의 특성을 표현할 수 있는 아바타를 자동으로 생성할 수 있다.
Sang Seop Kim;Ji-Young Choi;Jeong Ho Lim;Jeong-Seok Cho
한국식품저장유통학회지
/
제30권2호
/
pp.224-234
/
2023
We analyzed the major quality characteristics of red pepper powders from various regions and predicted these characteristics nondestructively using shortwave infrared hyperspectral imaging (HSI) technology. We conducted partial least squares regression analysis on 70% (n=71) of the acquired hyperspectral data of the red pepper powders to examine the major quality characteristics. Rc2 values of ≥0.8 were obtained for the ASTA color value (0.9263) and capsaicinoid content (0.8310). The developed quality prediction model was validated using the remaining 30% (n=35) of the hyperspectral data; the highest accuracy was achieved for the ASTA color value (Rp2=0.8488), and similar validity levels were achieved for the capsaicinoid and moisture contents. To increase the accuracy of the quality prediction model, we conducted spectrum preprocessing using SNV, MSC, SG-1, and SG-2, and the model's accuracy was verified. The results indicated that the accuracy of the model was most significantly improved by the MSC method, and the prediction accuracy for the ASTA color value was the highest for all the spectrum preprocessing methods. Our findings suggest that the quality characteristics of red pepper powders, even powders that do not conform to specific variables such as particle size and moisture content, can be predicted via HSI.
This paper proposes an algorithm to effectively detect the traffic lights and recognize the traffic signals using a monocular camera mounted on the front windshield glass of a vehicle in day time. The algorithm consists of three main parts. The first part is to generate the candidates of a traffic light. After conversion of RGB color model into HSI and YCbCr color spaces, the regions considered as a traffic light are detected. For these regions, edge processing is applied to extract the borders of the traffic light. The second part is to divide the candidates into traffic lights and non-traffic lights using Haar-like features and Adaboost algorithm. The third part is to recognize the signals of the traffic light using a template matching. Experimental results show that the proposed algorithm successfully detects the traffic lights and recognizes the traffic signals in real time in a variety of environments.
본 논문에서는, 가상 모델을 이용한 움직임 추출 방법을 제안한다. 제안한 방법은 첫 번째, 기존에 제안된 방법으로써 RGB 칼라 모델을 이용하여 전경 영역에 나타나는 에러 값을 제거하고, HSI 칼라 모델을 이용하여 불필요한 정보 값을 제거한다. 두 번째, 사람 10명의 신체 구조비를 이용하여 가상 모델을 생성한다. 그 때, 생성된 가상 모델을 추출된 영역에 매칭시키고, 원 탐색 기법을 이용하여 전경영역의 실제 인간의 머리에 대한 얼굴 실루엣을 추출한다. 세 번째 추출된 정보들을 이용하여 mean-shift 알고리즘에 적용시켜 물체를 추적한다. 마지막으로, 본 논문에서 제안한 알고리즘은 복잡하고 다양한 환경에서 실험을 통해 그 응용 가능성을 증명한다.
셀 애니메이션은 배경이 하나의 셀로 표현되고, 장면이 변화될 경우에는 배경이 변경되기 때문에 장면전환시 비교적 큰 변화가 일어난다. 그리고 실제로 카메라를 이용하여 촬영한 영상과는 달리 사람이 직접 그리다 보니 사용된 색상의 종류 또한 그렇게 많지 않다. 본 논문에서는 애니메이션의 이러한 특성을 최대한 반영하고 보다 효과적으로 셀 애니메이션의 장면전환을 검출하기 위해서 색상과 블록 단위의 히스토그램을 단계적으로 활용하는 새로운 애니메이션의 장면전환 검출 기법을 제안한다. 제안된 알고리즘은 연속적으로 입력되는 애니메이션 영상을 받아들인 후 먼저 칼라공간을 HSI 공간으로 변형하고, 두 영상 사이의 색상 값의 차연산을 수행하여 인접한 영상이 장면전환 후보인지를 1차적으로 판단한다. 만일, 인접한 영상이 장면전환 후보군으로 판단되면 부 영역별로 색상 히스토그램을 작성하고, 여기에 가중치를 적용하여 장면전환이 발생했는지의 유무를 최종적으로 판단한다. 본 논문의 실험에서는 제안된 애니메이션의 장면전환 검출 방법이 기존의 장면전환 검출 방법에 비해 보다 우수하다는 것을 보인다.
In this paper, we propose the feature points extraction method of hand region using vision. To do this, first, we find the HCbCr color model by using HSI and YCbCr color model. Second, we extract the hand region by using the HCbCr color model and the fuzzy color filter. Third, we extract the exact hand region by applying labeling algorithm to extracted hand region. Fourth, after finding the center of gravity of extracted hand region, we obtain the first feature points by using Canny edge, chain code, and DP method. And then, we obtain the feature points of hand region by applying the convex hull method to the extracted first feature points. Finally, we demonstrate the effectiveness and feasibility of the proposed method through some experiments.
Color는 다른 물체로부터 하나의 물체를 특정짓기 위한 효과적이고 강인한 실마리이므로 color clustering이 많은 주목을 받고 있다. 그러나 불규칙한 조명변화에 의한 color 변이 때문에 color segmentation은 매우 어렵다. 이 논문은 B-spline 곡선을 이용한, HSI color space에서의 intensity 정보를 포함한 신뢰할 수 있는 color modeling 방법을 제안한다. 이것은 비록 HS 평균임에도 불구하고 단색 물체의 color 분포가 조명이 변함에따라 변한다는 사실에 기반한다. 이 접근법을 사용하면 피부색을 가진 영역의 color clustering이 불규칙한 조명변화에 적응될 수 있다.
Color segmentation takes great attentions since a color is an effective and robust visual cue for characterizing one object from other objects. Color segmentation is, however, suffered from color variation induced from irregular illumination changes. This paper proposes a reliable color modeling approach in HSI (Hue-Saturation-Intensity) rotor space considering intensity information by adopting B-spline curve fitting to make a mathematical model for statistical characteristics of a color with respect to brightness. It is based on the fact that color distribution of a single-colored object is not invariant with respect to brightness variations even in HS (Hue-Saturation) plane. The proposed approach is applied for the segmentation of human skin areas successfully under various illumination conditions.
본 논문에서는 다양한 휴대단말 환경에서 획득한 영상에서 관심 객체의 특성을 추출하여 검출하는 내용 기반 영상 검색 기술을 제안한다. 검출하고자 하는 모델 영상의 HSI 컬러 정보를 이용한 컬러 히스토그램 정합법을 사용하여 관심 객체가 존재하는 템플릿을 검출한다. 해당 영역에서 해리스코너 검출 기법을 사용하여 코너 포인트를 검출 후 영역 성장법을 적용하여 관심 객체를 검출해내는 기법을 제안한다. 객체 검출 성능을 향상시키며 휴대단말 간의 속도를 향상시키기 위해 색상(Hue) 영역 정보만을 이용하여 연산량을 감소시키며 실시간 처리가 가능하도록 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.