• Title/Summary/Keyword: HPLC-UVD/MS

Search Result 36, Processing Time 0.025 seconds

Development and Interlaboratory Validation of an Analytical Method for the Determination of Saflufenacil in Agricultural Products by HPLC-UVD and LC-MS

  • Do, Jung-Ah;Park, Hyejin;Kwon, Ji-Eun;Oh, Jae-Ho;Cho, Yoon-Jae;Chang, Moon-Ik;Choi, Won-Jo;Lee, Hyun-Sook;Hong, Jin-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.4
    • /
    • pp.285-291
    • /
    • 2014
  • Saflufenacil is a low-volatile and uracil-based herbicide. This herbicide is used for pre-and post-emergence control of major broadleaf weeds. The objective of present study was to develop and validate an analytical method for saflufenacil determination in agricultural products for ensuring the food safety. The saflufenacil residues in samples were extracted with acetone, dichloromethane, and then purified with silica and graphitized carbon cartridge. The purified samples were analyzed by HPLC-UVD and confirmed with LC-MS. The linear range of saflufenacil was $0.1{\sim}5.0{\mu}gmL^{-1}$ with the correlation coefficient (r) = 0.999. Average recoveries of saflufenacil ranged from 80.5% to 110.2% at the spiked level of $0.02{\sim}0.5mgkg^{-1}$, while the relative standard deviation was 0.3~7.3%. In addition, the limit of detection and limit of quantification were 0.005 and $0.02mgL^{-1}$, respectively. Furthermore, an interlaboratory study among three labs was conducted to validate the method, and the results were satisfactory.

Development of Analytical Method for Cymoxanil in Agricultural Commodities using HPLC/UVD (HPLC/UVD를 이용한 농산물 중 cymoxanil의 개별 분석법 확립)

  • Kim, Ji-Yoon;Kim, Hea-Na;Kim, Ja-Young;Kim, Jong Geol;Ham, Hun-Ju;Lee, Young-Deuk;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.2
    • /
    • pp.69-78
    • /
    • 2014
  • In the present study, we developed an official individual analytical method for cymoxanil using HPLC/UVD, respectively in different representative crops. Individual analytical methods for these pesticides are not included in the Korea food code. The samples were extracted with acetonitrile, concentrated and partitioned with dichloromethane and saturated sodium chloride solution. For cymoxanil, extracts were concentrated and clean-up through silica gel column chromatography with dicloromethane/acetone (60/40 v/v) and subjected to instrumental analysis. The limit of detection (LOD) for cymoxanil were 0.1 ng and 1 ng respectively and limit of quantitation (LOQ) were 0.02 mg/kg. Recoveries for cymoxail ranged from 79.6~107.6% respectively, at fortification level of 0.02 mg/kg (LOQ), 0.2 mg/kg (10 LOQ) and 1.0 mg/kg (50 LOQ) and the coefficient of variation (CV) was less than 10%, regardless of sample types. These results were further confirmed with LC/MS. The proposed simultaneous analysis method is reproducible and sensitive enough to determine the residues of cymoxanil in the agricultural commodities. According to the validation data and performance characteristics and high sample throughput, the proposed method is suitable for routine application.

Development and validation of analytical methods for pyrifluquinazon residues determination on agricultural commodities by HPLC-UVD (HPLC-UVD를 이용한 농산물 중 pyrifluquinazon 잔류시험법 개발 및 검증)

  • Do, Jung-Ah;Kwon, Ji-Eun;Kim, Mi-Ra;Lee, Eun-Mi;Kuk, Ju-Hee;Cho, Yoon-Jae;Chang, Moon-Ik;Kwon, Kisung;Oh, Jae-Ho
    • Analytical Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.174-181
    • /
    • 2013
  • Pyrifluquinazon is classified with a quinazoline insecticide that regulates food intake by controling the feeding behavior acting on the endocrine or nervous system of pests such as aphids and white fly. To keep safety on pyrifluquinazon residues in agricultural commodities a simple, accurate and rapid analytical method was developed and validated using high performance liquid chromatograph (HPLC-UVD). The pyrifluquinazon residues acidified with 1% formic acid in samples were extracted with acetonitrile and partitioned with hexane subsequently to dichloromethane then purified with silica solid phase extraction (SPE) cartridge. The purified samples were detected using HPLC-UVD. The method was validated using apple and pear spiked with pyrifluquinazon at 0.02, 0.05 and 0.1 mg/kg and hulled rice, pepper, soybean at 0.05 and 0.1 mg/kg. Average recoveries were 70.5~107.9% with relative standard deviation less than 10%. The result of recoveries and overall coefficient of variation of a laboratory results in Gwangju regional FDA and Daejeon regional FDA was followed with Codex guideline (CODEX CAC/GL 40). This method is appropriated at pyrifluquinazon residues determination and will be used as official method of analysis.

Analytical Method for Triazine Herbicide Cyanazine Residues in Major Medicinal Crops (주요 약용작물에 대한 Cyanazine 제초제의 잔류 분석법)

  • Hwang, Young Sun;Lim, Jung Dae;Choung, Myoung Gun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.3
    • /
    • pp.237-245
    • /
    • 2016
  • Background: Cyanazine is used as a pre-emergent herbicide once during the growing season to control weeds of many upland crops worldwide. This study aimed to establish a method to determined cyanazine residue levels in major medicinal crops by using high performance liquid chromatography-UV detection/mass spectometry (HPLC-UVD/MS). Methods and Results: Cyanazine residue was extracted with acetone from the raw products of four representative medicinal plants - Scutellaria baicalensis, Paeonia lactiflora, Platycodon grandiflorum and Angelica gigas. The extract was diluted with a large volume of saline water and directly partitioned into dichloromethane to remove polar co-extractives in the aqueous phase. It was then purifined using optimized Florisil column chromatography. HPLC analysis conducted using an octadecylsilyl column allowed the successful separation of cyanazine from co-extractives of the samples, and the amount was sensitively quantified by ultraviolet absorption at 225 nm with no interference. The accuracy and precision of the proposed method were validated by conducting recovery experiments on each medicinal crop sample fortified with cyanazine at two concentration levels per crop in triplicate. Conclusions: The mean recoveries ranged from 91.2% to 105.3% for the four representative medicinal crops. The coefficients of variation were less than 10%, irrespective of the sample types and fortification levels. The limit of quantification of cyanazine was 0.02 mg/kg as verified by the recovery experiment. A confirmatory method was performed by liquid chromatography/MS using selected-ion monitoring technique to clearly identify the suspected residue.

Development and Validation of an Analytical Method for the Insecticide Sulfoxaflor in Agricultural Commodities using HPLC-UVD (HPLC-UVD를 이용한 농산물 중 살충제 sulfoxaflor의 시험법 개발 및 검증)

  • Do, Jung-Ah;Lee, Mi-Young;Park, Hyejin;Kwon, Ji-Eun;Jang, Hyojin;Cho, Yoon-Jae;Kang, Il-Hyun;Lee, Sang-Mok;Chang, Moon-Ik;Oh, Jae-Ho;Hwang, In-Gyun
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.148-155
    • /
    • 2013
  • Sulfoxaflor is a new active ingredient within the sulfoximine insecticide class that acts via a unique interaction with the nicotinic receptor. The MRLs (maximun residue limit) of sulfoxaflor in apple and pear are set at 0.4 mg/kg and that in pepper is set at 0.5 mg/kg. The purpose of this study was to develop an analytical method for the determination of sulfoxaflor residues in agricultural commodities using HPLC-UVD and LC-MS. The analysis of sulfoxaflor was performed by reverse phase-HPLC using an UV detector. Acetone and methanol were used for the extraction and aminopropyl ($NH_2$) cartridge was used for the clean-up in the samples. Recovery experiments were conducted on 7 representative agricultural products to validate the analytical method. The recoveries of the proposed method ranged from 82.8% to 108.2% and relative standard deviations were less than 10%. Finally, LC-MS with selected ion monitoring was also applied to confirm the suspected residues of sulfoxaflor in agricultural commodities.

Development of an Analytical Method for the Determination of Pyriofenone residue in Agricultural Products using HPLC-UVD (HPLC-UVD를 이용한 농산물 중 살균제 pyriofenone 분석법 확립)

  • Park, Hyejin;Kim, HeeJung;Do, Jung-Ah;Kwon, Ji-Eun;Yoon, Ji-Young;Lee, Ji-Young;Chang, Moon-Ik;Rhee, Gyu-Seek
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.2
    • /
    • pp.79-87
    • /
    • 2014
  • Pyriofenone is an aryl phenyl ketone fungicide that is newly registered in Korea in 2013 to control powdery mildew on food. The objective of this study was to develop reliable and sensitive analytical method for determination of pyriofenone residue in agricultural products for ensuring the food safety. The pyriofenone residues in all samples(Korean melon, pepper, potato, mandarin, soybean, and hulled rice) were extracted with acetonitrile, partitioned with dichloromethane, and then purified with a silica cartridge. The purified samples were analyzed by HPLC-UVD and confirmed with LC-MS. The linear range of pyriofenone was 0.05~5 mg/kg with the correlation coefficient ($r^2$) > 0.999. Average recoveries of pyriofenone ranged from 72.8% to 99.5% at the spiked level of 0.05 and 0.5 mg/kg, while the relative standard deviation was 2.3%~6.4%. In addition, the limit of detection and limit of quantification were 0.01 and 0.05 mg/kg, respectively. The results revealed that the developed and validated analytical method was suitable for pyriofenone determination in agricultural products.

Determination of cyromazine residues in agricultural commodities using HPLC-UVD/MS (HPLC-UVD/MS를 이용한 농산물 중 Cyromazine의 잔류분석법)

  • Song, Lee-Seul;Kim, Young-Hak;Lee, Su-Jin;Hwang, Young-Sun;Kwon, Chan-Hyeok;Do, Jung-Ah;Oh, Jae-Ho;Im, Moo-Hyeog;Chang, Woo-Suk;Lee, Young-Deuk;Choung, Myoung-Gun
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.3
    • /
    • pp.202-208
    • /
    • 2012
  • A high-performance liquid chromatographic (HPLC) method was developed to determine residues of cyromazine, a triazine insecticide, in agricultural commodities. Cyromazine was extracted with 90% aqueous methanol from representative crops which comprised brown rice, oyster mushroom, oriental melon, watermelon, and Chinese cabbage. Following to evaporation of methanol in the extract, the aqueous concentrate was acidified to form the protonated cyromazine. Dichloromethane partition was then applied to remove nonpolar co-extractives in the aqueous phase. Strong cation-exchange chromatography using Dowex 50W-X4 resin was employed for final purification of the extract. Cyromazine was successfully separated on a Zorbax SB-Aq $C_{18}$ column showing high retention for polar compounds. Cyromazine was sensitively quantitated by ultraviolet absorption at 214 nm. Limit of quantitation (LOQ) of the method was 0.04 mg/kg irrespective of sample types. Each crops were fortified at 3 different concentrations of cyromazine for recovery test. Mean recoveries from samples fortified at LOQ~2.0 mg/kg in triplicate ranged 80.2~103.3% in five agricultural commodities. Relative standard deviations in recoveries were all less than 6%. A selected-ion monitoring LC/MS method with electrospray ionization in positive-ion mode was also provided to confirm the suspected residue. The proposed method was reproducible and sensitive enough to routinely determine and inspect the residue of cyromazine in agricultural commodities.

Development of an Analytical Method for Fluxapyroxad Determination in Agricultural Commodities by HPLC-UVD (HPLC-UVD를 이용한 농산물 중 Fluxapyroxad 잔류분석법 개발)

  • Kwon, Ji-Eun;Kim, HeeJung;Do, Jung-Ah;Park, Hyejin;Yoon, Ji-Young;Lee, Ji-Young;Chang, Moon-Ik;Rhee, Gyu-Seek
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.3
    • /
    • pp.234-240
    • /
    • 2014
  • Fluxapyroxad is classified as carboxamide fungicide that inhibits succinate dehydrogenase in complex II of mitochondrial respiratory chain, which results in inhibition of mycelial growth within the fungus target species. This study was carried out to assure the safety of fluxapyroxad residues in agricultural products by developing an official analytical method. A new, reliable analytical method was developed and validated using High Performance liquid Chromatograph-UV/visible detector (HPLC-UVD) for the determination of fluxapyroxad residues. The fluxapyroxad residues in samples were extracted with acetonitrile, partitioned with dichloromethane, and then purified with silica solid phase extraction (SPE) cartridge. Correlation coefficient($R^2$) of fluxapyroxad standard solution was 0.9999. The method was validated using apple, pear, peanut, pepper, hulled rice, potato, and soybean spiked with fluxapyroxad at 0.05 and 0.5 mg/kg. Average recoveries were 80.6~114.0% with relative standard deviation less than 10%, and limit of detection (LOD) and limit of quantification (LOQ) were 0.01 and 0.05 mg/kg, respectively. All validation parameters were followed with Codex guideline (CAC/GL 40). LC-MS (Liquid Chromatograph-Mass Spectrometer) was also applied to confirm the analytical method. Base on these results, this method was found to be appropriate fluxapyroxad residue determination and can be used as the official method of analysis.

Modified QuEChERS Multi-Residue Analysis Method for 61 pesticides in Fruits using with HPLC and GC-ECD/NPD (HPLC 및 GC-ECD/NPD를 이용한 과일 중 61종 농약의 QuEChERS 전처리 다성분 분석법 개발)

  • Lee, Ju-Young;Hong, Su-Myeong;Kim, Taek-Kyum;Min, Zaw Win;Kim, Yang-Hyeon;Song, Kyung-Ae;Kwon, Hye-Yong;Lee, Hee-Dong;Im, Geon-Jae;Kim, Doo-Ho;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.3
    • /
    • pp.242-256
    • /
    • 2012
  • QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method has been a lot of research for pesticide analysis, because it is very simple and fast. However, this method requires high sensitivity instrument such as LC-MS/MS because of the use of small sample volume and many impurities compared to the conventional method. So, QuEChERS method needs to be modified for using with HPLC and GC-ECD/NPD. The aim of this work was to study the application of the QuEChERS method as well as its modification for the extraction and preconcentration of 5 groups of 61 pesticides from 4 fruits prior to their determination by HPLC-PDA, GC-ECD/NPD, and LC-MS/MS. The method was validated using spiking levels at 0.1 mg/kg (or 0.01 mg/kg) in apple, grapes, pear and persimmon. The average recovery by QuEChERS AOAC Official 2007. 01 version using the LC-MS/MS varied from 71.1127.4% for 61 pesticides. The average recovery rates using modified QuEChERS varied from 70.9~126% for 61 pesticides by HPLC-PDA and GC-ECD/NPD. The results satisfied the criteria of multiple pesticide residue analysis, setting 70~130% for recovery rates and below 30% for CV.

The Evaluation Functional Activity and Indicator Component Analysis and According to the Extraction Method of Eleuthrococcus Gracilistylus (섬오갈피 추출물 중 acanthoic acid 및 Kaurenoic acid 함량 분석 및 기능성 활성 평가)

  • Hyun Kyoung Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.73-80
    • /
    • 2024
  • To determinate the content of acanthoic acid and kaurenoic acid in 70% EtOH and hot water extracts of Eleutherococcus gracilistylus, quantitative analysis of each compound in samples was carried out by a HPLC-UVD. Also, the identification of each acompound in samples was successfully assigned by LC-MS analysis. In result, the contents of acanthoic acid and kaurenoic acid in 70% ethanoic extracts were 28.84±0.21 mg/g (2.88%), 26.38±1.63 mg/g (2.64%), respectively. However, the content of two compounds in hot-water extracts was not observed. In conclusion, it shows that 70% ethanol as a best extraction solvent to extract the acanthoic acid and its metabolite from Eleutherococcus gracilistylus was better than hot-water solvent. The 70% ethanol complex extract of Allium Hookeri and Eleutherococcus gracilistylus showed better effectiveness. In addition, the 70% ethanol extract complex of Allium Hookeri and Eleutherococcus gracilistylus showed better effects than the hot water solvent of DPPH radical scavenging ability, total polyphenols, and flavonoids content. The anti-inflammatory activity were significantly or partially reduced by treatment with ethanol extract complex(SEC) by Allium Hookeri and Eleutherococcus gracilistylus.