• 제목/요약/키워드: HPLC quantification

검색결과 402건 처리시간 0.026초

Quantification of Momilactones A and B in Rice Straw

  • Lee, Choon-Woo;Koichi Yoneyama;Yasutomo Takeuchi;Ryu, Su-Noh
    • 한국작물학회지
    • /
    • 제47권4호
    • /
    • pp.283-285
    • /
    • 2002
  • Momilactones A and B, the major phytotoxins and phytoalexins in rice plants, were quantified by a HPLC-APCI-MS-MS (APCI-MS-MS) system under multiple reaction monitoring conditions. Since MA and MB were found to be easily extracted with water, these phytotoxic compounds may affect germination and growth of other plant species when the rice straws were left in the fields.

On-line SPE-HPLC Method using Alumina Filtering to Selectively Extract Phenolic Compounds from Environmental Water

  • Lee, Sung-Kwang
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3755-3759
    • /
    • 2010
  • A on-line SPE (solid phase extraction)-HPLC preconcentration method was developed for the determination of phenolic compounds at trace levels in environmental water sample. XAD-4 and Dowex 1-X8 were used as sorbent in the on-line SPE-HPLC method for the selective enrichment of nine phenolic compounds, which are included in the priority pollutants list of the US EPA. Also alumina prefiltering considerably reduced the amount of interfering peaks due to humic substances that could accumulated due to the preconcentration step and prevent quantification of polar phenolic compounds in environmental water samples. This method was used to determine the phenolic compounds in tap and river water and superiority to the US EPA 625 method in its enrichment factor, pretreatment time, recoveries, and detection limit. The limits of detection were in the range of $0.3-0.9\;{\mu}g/L$ in tap water sample.

Quantitative Analysis of Bioactive Marker Compounds from Cinnamomi Ramulus and Cinnamomi Cortex by HPLC-UV

  • Jeong, Su Yang;Zhao, Bing Tian;Moon, Dong Cheul;Kang, Jong Seong;Lee, Je Hyun;Min, Byung Sun;Son, Jong Keun;Woo, Mi Hee
    • Natural Product Sciences
    • /
    • 제19권1호
    • /
    • pp.28-35
    • /
    • 2013
  • In this study, quantitative and pattern recognition analysis for the quality evaluation of Cinnamomi Ramulus and Cinnamomi Cortex using HPLC/UV was developed. For quantitative analysis, three major bioactive compounds were determined. The separation conditions employed for HPLC/UV were optimized using an ODS $C_{18}$ column ($250{\times}4.6$ mm, 5 ${\mu}m$) with gradient conditions of acetonitrile and water as the mobile phase, at a flow rate of 1.0 mL/min and a detection wavelength of 265 nm. This method was fully validated with respect to linearity, accuracy, precision, recovery, and robustness. The HPLC/UV method was applied successfully to the quantification of three major compounds in the extract of Cinnamomi Ramulus and Cinnamomi Cortex. The HPLC analytical method for pattern recognition analysis was validated by repeated analysis of thirty eight Cinnamomi Ramulus and thirty five Cinnamomi Cortex samples. The results indicate that the established HPLC/UV method is suitable for quantitative analysis.

Quantitative and Pattern Recognition Analyses for the Quality Evaluation of Magnoliae Flos by HPLC

  • Fang, Zhe;Shen, Chang Min;Moon, Dong-Cheul;Son, Kun-Ho;Son, Jong-Keun;Woo, Mi-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3371-3381
    • /
    • 2010
  • In this study, quantitative and pattern recognition analysis for the quality evaluation of Magnoliae Flos using HPLC/UV was developed. For quantitative analysis, eleven major bioactive lignan compounds were determined. The separation conditions employed for HPLC/UV were optimized using ODS $C_{18}$ column ($250{\times}4.6\;mm$, $5\;{\mu}m$) with isocratic elution of acetonitrile and water with 1% acetic acid as the mobile phase at a flow rate of 1.0 mL/min and a detection wavelength of 278 nm. These methods were fully validated with respect to the linearity, accuracy, precision, recovery, and robustness. The HPLC/UV method was applied successfully to the quantification of eleven major compounds in the extract of Magnoliae Flos. The HPLC analytical method for pattern recognition analysis was validated by repeated analysis of twenty one reference samples corresponding to seven different species of Magnoliae Flos and nine samples purchased from market. The results indicate that the established HPLC/UV method is suitable for the quantitative analysis and quality control of multi-components in Magnoliae Flos.

Quantitative and Pattern Recognition Analyses for the Quality Evaluation of Cimicifugae Rhizoma by HPLC

  • Fang, Zhe;Moon, Dong-Cheul;Son, Kun-Ho;Son, Jong-Keun;Min, Byung-Sun;Woo, Mi-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권1호
    • /
    • pp.239-246
    • /
    • 2011
  • In this study, quantitative and pattern recognition analysis for the quality evaluation of Cimicifugae Rhizoma using HPLC/UV was developed. For quantitative analysis, three major bioactive phenolic compounds were determined. The separation conditions employed for HPLC/UV were optimized using ODS $C_{18}$ column ($250{\times}4.6mm$, $5{\mu}M$) with isocratic elution of acetonitrile and water with 0.1% phosphoric acid as the mobile phase at a flow rate of 1.0 mL/min and a detection wavelength of 323 nm. These methods were fully validated with respect to the linearity, accuracy, precision, recovery, and robustness. The HPLC/UV method was applied successfully to the quantification of three major compounds in the extract of Cimicifugae Rhizoma. The HPLC analytical method for pattern recognition analysis was validated by repeated analysis of twelve reference samples corresponding to five different species of Cimicifugae Rhizoma and seventeen samples purchased from markets. The results indicate that the established HPLC/UV method is suitable for the quantitative analysis and quality control of multi-components in Cimicifugae Rhizoma.

HPLC-DAD를 이용한 평위산 중의 Hesperidin 및 Glycyrrhizin의 동시분석법 확립 (Simultaneous Determination of Hesperidin and Glycyrrhizin in Pyungwi-san by HPLC/DAD)

  • 이미경;최옥경;박진호;조정희;김도훈;백주현;김효진;이기용;김상두;김영중;성상현
    • 생약학회지
    • /
    • 제39권3호
    • /
    • pp.199-202
    • /
    • 2008
  • A high performance liquid chromatographic (HPLC) method for the simultaneous determination of hesperidin and glycyrrhizin was established for the quality control of traditional herbal medicinal preparation, Pyungwi-san (PWS). Separation and quantification were successfully achieved with a Waters XTerra RP18 column ($5{\mu}m$, 4.6 mm I.D. ${\times}$ 150 mm) by gradient elution of a mixture of acetonitrile and water containing 0.03% phosphoric acid (pH 2.03) at a flow rate of 1.0 ml/min. The diode-array UV/vis detector (DAD) was used for the detection and the wavelength for quantification was set at 230 nm. The presence of hesperidin and glycyrrhizin in this extract was ascertained by retention time, spiking with each authentic standard and UV spectrum. All four compounds showed good linearity $(r^2>0.995)$ in a relatively wide concentration ranges. The R.S.D. for intra-day and inter-day precision was less than 7.0% and the limits of detection (LOD) were less than 60 ng. The mean recovery of each compound was 99.0-105.6% with R.S.D. values less than 4.0%. This method was successfully applied to the determination of contents of hesperidin and glycyrrhizin in three commercial products of PWS. These results suggest that the developed HPLC method is simple, effective and could be readily utilized as a quality control method for commercial PWS products.

근적외선분광분석기를 이용한 미강의 Tocopherol과 Tocotrienol 함량 분석 (Quantification of Tocopherol and Tocotrienol Content in Rice Bran by Near Infrated Reflectance Spectroscopy)

  • 김용호;강창성;이영상
    • 한국작물학회지
    • /
    • 제49권3호
    • /
    • pp.211-215
    • /
    • 2004
  • 미강에 함유되어 있는 토코페롤 및 토코트리에놀의 함량을 비파괴적으로 신속하게 추정하기 위하여 NIRS(근적외선 분광분석기)를 이용한 분석 방법을 검토하였다. 벼 유전자원 80계통의 미장을 사용하여 HPLC에서 분석된 토코페롤 및 토코트리에놀의 함량치를 NIRS 스펙트럼에 적용시킨 후 검량식을 작성하였다. NIRS의 검량식을 몇가지 방법에 의하여 비교 분석한 결과 2차 미분된 스펙트럼을 MPLS(Modified Partial Least Squares)를 이용한 회귀식에 이용하는 것이 가장 적합하였다. HPLC를 이용한 유전자원들의 성분 함량과 NIRS에서 도출된 검량식과의 상관계수는 토코페롤과 토코트리에놀이 각각 0.992, 0.953을 나타내었다. 이들 검량식은 validation file 에서도 0.846 및 0.956의 높은 상관을 보여 미강 상태에서 토코페롤 및 토코트리에놀의 함량을 NIRS를 이용하여 신속하게 분석할 수 있을 것으로 판단되었다.

인체 혈장 중 니카르디핀의 정량을 위한 HPLC 분석법 검증 및 단일 용량 투여에 의한 약물동태 연구 (Validation of a Simple HPLC Method for Determination of Nicardipine in Human Plasma and Its Application to Single-dose Pharmacokinetics)

  • 임호택;조성희;이헌우;박완수;류재환;최영욱;용철순;이경태
    • Journal of Pharmaceutical Investigation
    • /
    • 제35권6호
    • /
    • pp.461-465
    • /
    • 2005
  • A simple HPLC method with ultraviolet detection of nicardipine in human plasma was developed and validated. After drug extraction with solid phase extraction (SPE) method, chromatographic separation of nicardipine in plasma was achieved at $30^{\circ}C$ with a $C_{18}$ column and acetonitrile-0.02% phosphate buffer mixture (with 0.02% triethylamine, final pH 7.0), as mobile phase. Quantitative determination was performed by ultraviolet detection at 254 nm. The method was specific and validated with a limit of quantification of 5 ng/mL. The intra- and inter-day precision and accuracy were acceptable for all quality control samples including the lower limit of quantification. The applicability of the method was demonstrated by analysis of plasma after oral administration of a single 40 mg dose to 8 healthy subjects. From the plasma nicardipine concentration versus time curves, the mean $AUC_{t}$, was $134.04{\pm}59.72\;ng\;hr/mL$ and $C_{max}$ of $108.65{\pm}69.17\;ng/mL$ reached 1.5 hr after administration. The mean biological half-life of nicardipine was $3.93{\pm}0.82\;hr$. Based on the results, this simple and validated assay method could readily be used in any pharmacokinetic or bioequivalence studies using human.

아세틸아세톤 유도체화 시약과 HPLC를 이용한 미량 포름알데하이드 수질분석 (Determination of Trace Amounts of Formaldehyde in Water Using High Performance Liquid Chromatography and Acetylacetone as a Derivative Reagent)

  • 이기창;박재형;이원태
    • 대한환경공학회지
    • /
    • 제37권2호
    • /
    • pp.81-86
    • /
    • 2015
  • 수중에 존재하는 포름알데하이드(formaldehyde)를 ${\mu}g/L$ 단위 농도까지 정량할 수 있는 간단한 분석법을 개발하였다. 시료 전처리시 유도체화 시약으로 아세틸아세톤(acetylacetone)을 사용하였고, 기존 분석방법과 달리 추출 및 농축과정을 거치지 않는 것이 장점이다. 시료에 유도체화 시약을 첨가하고 $80^{\circ}C$에서 30분 반응시킨 후 HPLC를 이용하여 포름알데하이드를 분석하였다. 본 방법에 대한 정도보증 결과, 방법검출한계 및 정량한계는 각각 1.6, $5.0{\mu}g/L$로 기존 분석법에 비하여 낮았다. 정밀도 및 정확도는 각각 0.6~3.0%, 91.6~106.3%로 우수하였다. 또한 다양한 환경시료에 대한 회수율 검증에서도 92.0~115.2%로 양호하게 나타났다.

Simultaneous Determination and Recognition Analysis of Coumarins in Angelica decursiva and Peucedanum praeruptorum by HPLC-DAD

  • Kim, Hye Mi;Jeong, Su Yang;Kim, Sun Min;Lee, Kyu Ha;Kim, Jong Hwan;Seong, Rack Seon
    • Natural Product Sciences
    • /
    • 제22권3호
    • /
    • pp.162-167
    • /
    • 2016
  • Peucedani Radix is the root of Angelica decursiva Franchet et Savatier (=Peucedanum decursivum Maximowicz) or Peucedanum praeruptorum Dunn in several Asian countries. The coumarins contained in Peucedani Radix were quantitatively analyzed using HPLC-DAD to develop a simultaneous determination for the quality control of A. decursiva and P. praeruptorum. For quantitative analysis, four major coumarins contained in these medicinal plants were assessed. Nodakenin (1), nodakenetin (2), praeruptorin A (3), and praeruptorin B (4) were separated with a Phenomenex Luna C18 column ($5{\mu}m$, $4.6{\times}250mm$) under the gradient conditions using distilled water with 0.1% phosphoric acid and acetonitrile with 0.1% phosphoric acid as the mobile phase, at a flow rate of 1.0 ml/min and a detection wavelength of 330 nm. This method was fully validated for linearity, accuracy, precision, recovery, and limit of detection and quantification. As a result, A. decursiva and P. praeruptorum were clearly classified by the quantification of four major coumarins in extracts. Also, the pattern recognition analysis based on HPLC indicates that all of the samples were largely clustered into two groups. Therefore, it is possible to distinguish between A. decursiva and P. praeruptorum and contribute to quality control.