• Title/Summary/Keyword: HPGe detector

Search Result 102, Processing Time 0.026 seconds

Relative Efficiency Determination of HPGe Detector (HPGe 검출기의 상대효율 결정)

  • 강정구;김승곤;김종일;이정옥;이춘호;최재우
    • Progress in Medical Physics
    • /
    • v.4 no.2
    • /
    • pp.27-36
    • /
    • 1993
  • A relative efficiency of a HPGe detector as a function of the incident gamma ray energy in the range 120 keV to 1500 keV was measured using 21 gamma rays emitted by a $\^$152/Eu source. A semiempirical expression was then determined which can reproduce the measured values reasonably well. The two results are compared to a Monte Carlo simulation calculation.

  • PDF

Calculation of Effective Angular Correlation in the HPGe Spectroscopy of Co-60 $\gamma$-rays

  • Kim, In-Jung;Sun, Gwang-Min;Park, H. D.;Bae, Young-Dug
    • Nuclear Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.22-29
    • /
    • 2002
  • The angular correlation effect was investigated for Co-60 ${\gamma}$-ray spectroscopy by using HPGe detector and the effective angular correlation was theoretically calculated by considering the finite detector solid angle. For the calculation of effective angular correlation, the detection efficiency as a function of ${\gamma}$-ray incident direction was obtained by using Monte Carlo method and the first interaction model. The results and the methods used in the calculation are discussed.

Performance Test of Portable Hand-Held HPGe Detector Prototype for Safeguard Inspection (안전조치 사찰을 위한 휴대형 HPGe 검출기 시제품 성능평가 실험)

  • Kwak, Sung-Woo;Ahn, Gil Hoon;Park, Iljin;Ham, Young Soo;Dreyer, Jonathan
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.54-60
    • /
    • 2014
  • IAEA has employed various types of radiation detectors - HPGe, NaI, CZT - for accountancy of nuclear material. Among them, HPGe has been mainly used in verification activities required for high accuracy. Due to its essential cooling component(a liquid-nitrogen cooling or a mechanical cooling system), it is large and heavy and needs long cooling time before use. New hand-held portable HPGe has been developed to address such problems. This paper deals with results of performance evaluation test of the new hand-held portable HPGe prototype which was used during IAEA's inspection activities. Radioactive spectra obtained with the new portable HPGe showed different characteristics depending on types and enrichments of nuclear materials inspected. Also, Gamma-rays from daughter radioisotopes in the decay series of $^{235}U$ and $^{238}U$ and characteristic x-rays from uranium were able to be remarkably separated from other peaks in the spectra. A relative error of enrichment measured by the new portable HPGe was in the range of 9 to 27%. The enrichment measurement results didn't meet partially requirement of IAEA because of a small size of a radiation sensing material. This problem might be solved through a further study. This paper discusses how to determine enrichment of nuclear material as well as how to apply the new hand-held portable HPGe to safeguard inspection. There have been few papers to deal with IAEA inspection activity in Korea to verify accountancy of nuclear material in national nuclear facilities. This paper would contribute to analyzing results of safeguards inspection. Also, it is expected that things discussed about further improvement of a radiation detector would make contribution to development of a radiation detector in the related field.

A Study on the Comparison of HPGe Detector Response Data for Low Energy Photons Using MCNP, EGS, and ITS Codes (MCNP, EGS, ITS코드를 이용한 고순도 게르마늄 검출기의 저에너지 광자에 대한 반응 비교연구)

  • Kim, Soon-Young;Kim, Jong-Kyung;Kim, Jong-Oh;Kim, Bong-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.2
    • /
    • pp.125-129
    • /
    • 1996
  • The energy response of HPGe detector for low energy Photons was determined by using three Monte Carlo codes. MCNP4A. EGS4, and CYLTRAN in ITS3. In this study. bare HPGe detector$(100 mm^2{\times}10mm)$ was used and a pencil beam was incident perpendicularly on the center of the detector surface. The photopeak efficiency, $K_{\alpha}$ and $K_{\beta}$ escape fractions were calculated as a function of incident X-ray energies ranging from 12 to 60 keV in 2-keV increments. Since the Compton. elastic. ana penetration fraction were negligible in this energy range. they were ignored in the calculation. Although MCNP. EGS, and CYLTRAN codes calculated slightly different energy response of HPGe detector for low energy Photons, it appears that the three Monte Carlo codes can Predict the low energy Photon scattering Processes accurately. The MCNP results, which are generally known as to be less accurate at low energy ranges than the EGS and ITS results. are comparable to the results of EGS and ITS and are applicable to the calculation of the low energy response data of a detector.

  • PDF

Determination of Spectrum-Exposure Rate Conversion Factor for a Portable High Purity Germanium Detector (휴대형 고순도 게르마늄검출기에 대한 스펙트럼-조사선량율 변환연산자의 결정)

  • Kwak, Sang-Soo;Park, Chong-Mook;Ro, Seung-Gy
    • Journal of Radiation Protection and Research
    • /
    • v.13 no.2
    • /
    • pp.29-40
    • /
    • 1988
  • A spectrum-exposure rate conversion operator G(E) for a portable HPGe detector used for field environmental radiation survey was theoretically developed on the basis of a space distribution function of gamma flux emitted from a disk source and an areal efficiency of the detector. The radiation exposure rates measured using this G(E) and the portable HPGe. detector connected to a portable multichannel analyzer were compared with those measured by a 3' ${\phi}\;{\times}$3' NaI(Tl) scintillation detector with the reported G(E) and a pressurized ionization chamber. A comparison of the three results showed that the result obtained using the HPGe detector was lower than those determined using the NaI(Tl) detector and ionization chamber by 17% to 29%, The difference obtained is close to that reported in literature. The method developed here can be easily applicable to obtain a G(E) factor suitable to any detector for detecting the exposure rate of environmental gamma radiation, since the spectrum-exposure rate conversion operator can be calculated by a hand calculator.

  • PDF

Dependence Evaluation of the Self-Absorption Correction Factor for p-type High Purity Germanium Detector Characteristics (p-type HPGe 검출기 특성에 따른 밀도 보정인자 의존도 평가)

  • Jang, Mee;Ji, Young-Yong;Kim, Chang-Jong;Lee, Wanno;Kang, Mun Ja
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.295-300
    • /
    • 2015
  • The precise determination of the activity for each radionuclide in environmental samples requires the self-absorption correction factor. In this research, we derived the self-absorption correction factor for three p-type high purity germanium detectors using the Monte Carlo code MCNPX. These detectors have different characteristics such as crystal diameter, height and size of the core. We compared the calculated full-energy peak efficiency with the experimental value using a standard sample with $1g/m^3$ density and verified the modeling. We simulated the dependency of the full-energy peak efficiency on the 0.3, 0.6, 0.9, 1.0, 1.2 and $1.5g/m^3$ samples and obtained the corresponding self-absorption correction factor. The self-absorption correction factors calculated for the three detectors differ by less than 1% over most of the energy range and sample densities considered. This indicates that the self-absorption correction factors are independent of the crystal characteristics of HPGe detector.

Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector

  • Jeong, Meeyoung;Lee, Kyeong Beom;Kim, Kyeong Ja;Lee, Min-Kie;Han, Ju-Bong
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.317-323
    • /
    • 2014
  • Odyssey, one of the NASA's Mars exploration program and SELENE (Kaguya), a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS) for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe) detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA) method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA) method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of $^{40}K$, $^{232}Th$ and $^{238}U$ in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl) and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.

Simulation of the Determination of NaCl Concentration in Concrete samples by the Neutron induced Prompt Gamma-ray Method

  • Kim, Hyeon-Soo
    • Journal of Environmental Science International
    • /
    • v.13 no.2
    • /
    • pp.175-180
    • /
    • 2004
  • A prompt gamma-ray neutron activation (PGNA) system was simulated by the Monte Carlo N-Particle transport code (MCNP-4A) to estimate the level at which the scattered photon fluence rate, the absolute efficiency of the HPGe-detector, the volume of the concrete sample and the $^{35}$ /Cl(n, ${\gamma}$) reaction rate in this sample contribute to the count rate in the NaCl concentration measurement. The n- ${\gamma}$ fluence rates at the ST-2 beam tube exit of the HANARO reactor were used as input data, and the GAMMA-X type HPGe detector was modeled to tally 1.1649 MeV ${\gamma}$ -rays emitted from the $^{35}$ Cl(n, ${\gamma}$) reaction in the concrete sample. For three cylindrical concrete samples of 13.8, 46.8 and 157.1 ㎤ volumes, respectively, the relations between the NaCl weight fractions of 0.1, 1, 2 and 5 % in each of the concrete samples and the 1.1 649 MeV pulses created in the HPGe detector model were studied. As a result, it was found that the count rate at the same NaCl concentration nearly depends on the volume of the samples in a simulated condition of the same NaCl concentration samples, and that the linearities of the NaCl concentration calibration curves were reasonable in the narrow range of the NaCl weight fraction.

The effect of front edge on efficiency for point and volume source geometries in p-type HPGe detectors

  • Esra Uyar ;Mustafa Hicabi Bolukdemir
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4220-4225
    • /
    • 2022
  • Monte Carlo (MC) simulations are increasingly being used as an alternative or supplement to the gamma spectrometric method in determining the full energy peak efficiency (FEPE) necessary for radionuclide identification and quantification. The MC method is more advantageous than the experimental method in terms of both cost and time. Experimental calibration with standard sources is difficult, especially for specimens with unusually shaped geometries. However, with MC, efficiency values can be obtained by modeling the geometry as desired without using any calibration source. Modeling the detector with the correct parameters is critical in the MC method. These parameters given to the user by the manufacturer are especially the dimensions of the crystal and its front edge, the thickness of the dead layer, dimensions, and materials of the detector components. This study aimed to investigate the effect of the front edge geometry of the detector crystal on efficiency, so the effect of rounded and sharp modeled front edges on the FEPE was investigated for <300 keV with three different HPGe detectors in point and volume source geometries using PHITS MC code. All results showed that the crystal should be modeled as a rounded edge, especially for gamma-ray energies below 100 keV.