• 제목/요약/키워드: HP-TLC

검색결과 17건 처리시간 0.044초

녹차 theanine을 이용한 젤리 제조 및 품질특성 조사 (Production of green tea jelly using theanine and its physiochemical characterization)

  • 김성경;정하나;임애은;양광열;최용수;남승희
    • 한국식품과학회지
    • /
    • 제53권5호
    • /
    • pp.553-560
    • /
    • 2021
  • 본 연구에서는 저온진공조건에서 추출 시간과 농도에 따른 녹차 열수추출조건을 최적화한 후 HP-20 column으로 caffeine을 제거한 녹차 추출물을 이용해 theanine 함유 기능성 젤리를 제조하였다. 또한, theanine 함유 젤리의 품질 특성, 제형안정성 및 항산화 효과, AChE 억제능을 조사하였다. 최적추출조건은 8% 녹차 분말을 2시간 추출하여 theanine 0.95 mg/mL, GABA 0.28 mg/mL, caffeine 1.45 mg/mL 추출액을 HP-20 column을 이용해 80% 에탄올로 카페인을 제거하였다. 3종의 겔화제와 농도별로 4종의 theanine 추출물 S1-S4(10-50%)을 제조해 품질 특성을 조사한 결과, 젤리에 theanine 추출물이 많을수록 L값과 b값이 증가하였다. 젤리의 물리적 특성을 조사한 결과, 3가지 겔화제 중 타마린드검, 잔탄검, 로거스트콩검(2:3:5=w/w/w)을 조합한 겔화제 III이 경도와 점착성이 낮고 탄력성이 높아 조직감이 가장 뛰어났다. 제형안정성 조사 시, 35%가 첨가된 S3가 이수율 25.88%과 붕괴율 1.31%로 우수한 제형안정성을 나타냈다. 또한 theanine 함유 젤리는 95℃, 30분간 가열조건에도 theanine과 GABA 성분이 파괴되지 않고 대부분 잔존하는 것을 TLC와 LC-MS 분석을 통해 확인했다. Theanine 추출물의 농도가 높을수록 DPPH radical 소거능은 증가하며, S4(50%)는 0.075 mg/mL ascorbic acid 수준과 유사한 항산화력을 나타냈다. AChE 저해 효과는 S3(35%)가 가장 높았으며 이는 donepezil 2.5 μM과 동일한 수준의 AChE 저해 활성을 나타냈다. 따라서 본 연구는 녹차 추출물에서 caffeine을 제거한 theanine 추출물로 기능성 젤리를 제조하였으며 품질 특성을 조사하였다.

Isolation, Identification and Determination of Antioxidant in Ginger (Zingiber officinale) Rhizome

  • Cho, Kang-Jin;Kim, Jin-Weon;Choi, In-Lok;Kim, Jung-Bong;Hwang, Young-Soo
    • Journal of Applied Biological Chemistry
    • /
    • 제44권1호
    • /
    • pp.12-15
    • /
    • 2001
  • The antioxidative compounds and antioxidant contents of ginger (Zingiber officinale) rhizomes were determined. Substances reextracted using ethyl acetate from crude methanol extract of fresh ginger rhizome were separated through thin layer chromatography. Ten phenolic antioxidative bands were visualized through color reactions using ferric chloride-potassium ferricyanide and 1,1-diphenyl-2-picrylbydrazyl (DPPH). The antioxidative compounds were purified through preparative TLC and high performance liquid chromatography (HPLC), among which, five antioxidants were identified as 4-, 6-, 8-. and 10-gingerols and 6-shogaol on the basis of their molecular weights determined through LC-MS. As shown in experiments using DPPH free radicals, 6-Gingerol and PT4-HP8 (unknown) were revealed to be more efficient than BHT (butylated hydroxy toluene). Contents of gingerols were determined through reverse phase HPLC. Total gingerol contents (sum of 6-,8-, and 10-gingerols) in rhizomes of different ginger varieties varied significantly. The HG55 (collected at Wanju district in Korea) and the HG52 (imported from Brazil) showed the highest gingerol contents.

  • PDF

Radical Scavenging Activities of Phenolic Compounds Isolated from Mulberry (Morus spp.) Cake

  • Shin, Young-Woong;Lee, Seong-Kwon;Kwon, Yun-Ju;Rhee, Soon-Jae;Choi, Sang-Won
    • Preventive Nutrition and Food Science
    • /
    • 제10권4호
    • /
    • pp.326-332
    • /
    • 2005
  • A methanol extract of mulberry cake prepared from mulberry fruits (Morus spp.) was shown to have strong scavenging activities against DPPH, superoxide and hydroxyl radicals. Eleven phenolic compounds were isolated from the mulberry cake by a combination of Diaion HP-20, silica gel (or polyamide), Sephadex LH-20 column chromatographies, preparative HPLC and TLC. Their chemical structures were characterized as procatechuic acid (PCA), caffeic acid (CA), cyanidin 3-O-$\beta$-D-glucopyranoside (CyG) and cyanidin $3-O-\beta­D-rutinoside$ (CyR), rutin (RT), isoquercitrin (IQT), astragalin (AG), quercetin (QT), morin (MR), di-hydroquercetin (DHQ), and 4-prenylmoracin (PM) by spectral analysis and the published data. Most of the phenolic constituents were effective scavengers of DPPH, superoxide and hydroxyl radicals, and especially caffeic acid and 4-prenylmoracin showed potent superoxide and hydroxyl radical scavenging activity, in which their activities were higher than that of the well-known antioxidant, BHT (p< 0.05). Dehydroquercetin and quercetin also exhibited strong superoxide and hydroxyl radical scavenging activities. These results suggest that mulberry cake containing antioxidant phenolic compounds may be useful as natural antioxidants in functional foods and cosmetics.

Identification of FM001 as Plant Growth-Promoting Substance from Acremonium strictum MJN1 Culture

  • JUNG, JAE-HAN;DONG-MIN SHIN;WOO-CHUL BAE;SOON-KWANG HONG;JOO-WON SUH;SANGHO KOO;BYEONG-CHUL JEONG
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권2호
    • /
    • pp.327-330
    • /
    • 2002
  • A plant growth-promoting substance, FM001, was isolated from the culture broth of Acremonium strictum MJN1. The purification steps included solvent extraction, adsorption chromatography using Diaion HP20, TLC on silica, and HLPC using a C-18 column. The purified FM001 enhanced rice seedling growth by $11.1\%\;and\;34.0\%$ of the dried weight of the shoots and roots, and also radish growth by $26.5\%\;and\;23.7\%$ of the top length and dried weight. FM001 also significantly promoted the growth of red pepper by increasing $32.7\%$ of fruit weight and $11.3\%$ as regards the height. FM001 consisted of C, H, O, N, and S, and its molecular weight was determined to be 537.78 Da. The structure of FM001 resembled brassinosteriods, and it would appear to have great potential as an effective bio-fertilizer.

고추역병균 Phytophthora capsici를 방제하는 길항균주 Bacillus megaterium KL39의 선발과 길항물질 (Purification and Characteriztion of an Antifungal Antibiotic from Bacillus megaterium KL 39, a Biocontrol Agent of Red-Papper Phytophtora Blight Disease.)

  • 정희경;김상달
    • 한국미생물·생명공학회지
    • /
    • 제31권3호
    • /
    • pp.235-241
    • /
    • 2003
  • 항진균성 항생물질에 의한 고추역병의 생물방제에 관한 연구를 위하여 지역 경작지에서 고추역병균 P. capsici 생육을 저해는 다기능의 강력한 길항세균을 선발하였다 선발된 균주는 배양학적, 생리학적, 생화학적 실험과 AEI(CHB50) 및 Biolog(Microlog 4.01C) 시스템을 이용하여 동정한 결과 B. megaterium와 97%이상 일치하여 최종적으로 선발된 길항세균을 B. megaterium KL 39로 명명하였다. B.megaterium KL 39의 P. capsic에 대한 길항은 열에 안정하고 n-BuOH에 추출이 되는 저분자성 항생물질과 용매에 추출되지 않은 열에 약한 고분자성의 식물병원균 세포벽 가수분해효소인 cellulase에 의한 것으로 확인되었다. 길항균주 B.megaterium KL 39가 생산하는 항진균성 항생물질은 P.capsici의 포자발아와 균사성장에 큰 영향을 미쳤으며 0.4% fructose, 0.3% yeast extract, 5 mM KCI (pH 8.0)을 포함한 배지에서 3$0^{\circ}C$, 40시간 배양하였을 때 그 생산성이 최대치를 나타내었다. Diaion HP-20 column, silica gel column, Sephadex LH-20 column과 HPLC에 의해 항생물질을 정제하였으며 정제된 항생물질은 TLC plate상에서 Ethanol:Ammonia:Wate.(8:1:1)로 전개한 결과 RF value가 0.32를 나타내었으며, 단일물질로 정제된 항생물질을 KL39로 명명하였다. 선발된 길항미생물 E. megaterium KL 39와 정제된 항생물질 KL39를 가지고 고추를 기주식물로 하여 in vivo pot시험 결과 고추역병균 P.capsic게 의해 유발되는 고추역병에 대한 길항력으로 두 가지 모두 고추역병 방제력이 있음을 식물실험에서 확인할 수 있었다.

Growth Inhibition Profile of an Antibacterial Entity from Paenibacillus DY1 Isolated from Korean Soil against Multidrug Resistant Enteric Bacterial Strains and Its Characterization

  • ;;유관희
    • 대한의생명과학회지
    • /
    • 제13권1호
    • /
    • pp.47-53
    • /
    • 2007
  • Due to wide abuse of antibiotics both in human and livestock use, the advent and spread of multidrug resistant (MDR) pathogens becomes a serious health problem all over the world. Since the development of new antibiotics is at a standstill in pharmaceutical industry, the choice of therapeutic antibiotics is getting narrower. In this study, in an effort to search new antibiotics, the antimicrobial activity of Paenibacillus DY1 isolated from Korean soil was characterized on its growth inhibition spectrum against various health threatening MDR strains, with its stability and chemical structure. Extracellular culture filtrate of Paenibacillus DY1 effectively inhibits the growth of all the tested MDR enteropathogenic Eshcherichia coli, enterohemolytic E. coli, and enterotoxigenic E. coli strains, at a similar level to that on the nonresistant control E. coli strains. It showed significant growth inhibition effect against the causative agents of class one legal communicable disease, MDR Salmonella typhi, MDR Salmonella paratyphi A, food poisoning bacteria, MDR Salmonella typhimurium, and other MDR Salmonella spp. The growth of all of 10 different MDR Shigella spp. strains and 6 different Vibrio spp. strains tested was also inhibited. The antimicrobial activity of Paenibacillus DY1 was well preserved after heat treatment, and was also stable in both alkaline and acidic environment. The antimicrobial activity was partially purified with Diaion HP20 column and TLC. By NMR study, the putative structure of the activity was postulated as an alkane having hydroxyl groups.

  • PDF

Galactooligosaccharide Synthesis by Active ${\beta}$-Galactosidase Inclusion Bodies-Containing Escherichia coli Cells

  • Lee, Sang-Eun;Seo, Hyeon-Beom;Kim, Hye-Ji;Yeon, Ji-Hyeon;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권11호
    • /
    • pp.1151-1158
    • /
    • 2011
  • In this study, a galactooligosaccharide (GOS) was synthesized using active ${\beta}$-galactosidase (${\beta}$-gal) inclusion bodies (IBs)-containing Escherichia coli (E. coli) cells. Analysis by MALDI-TOF (matrix-assisted laser desorption/ionization-time of flight) mass spectrometry revealed that a trisaccharide was the major constituent of the synthesized GOS mixture. Additionally, the optimal pH, lactose concentration, amounts of E. coli ${\beta}$-gal IBs, and temperature for GOS synthesis were 7.5, 500 g/l, 3.2 U/ml, and $37^{\circ}C$, respectively. The total GOS yield from 500 g/l of lactose under these optimal conditions was about 32%, which corresponded to 160.4 g/l of GOS. Western blot analyses revealed that ${\beta}$-gal IBs were gradually destroyed during the reaction. In addition, when both the reaction mixture and E. coli ${\beta}$-gal hydrolysate were analyzed by high-performance thin-layer chromatography (HP-TLC), the trisaccharide was determined to be galactosyl lactose, indicating that a galactose moiety was most likely transferred to a lactose molecule during GOS synthesis. This GOS synthesis system might be useful for the synthesis of galactosylated drugs, which have recently received significant attention owing to the ability of the galactose molecules to improve the drugs solubility while decreasing their toxicity. ${\beta}$-Gal IB utilization is potentially a more convenient and economic approach to enzymatic GOS synthesis, since no enzyme purification steps after the transgalactosylation reaction would be required.