• Title/Summary/Keyword: HOMO/LUMO

Search Result 171, Processing Time 0.017 seconds

Prediction of Radical Reaction Positions in PAHs by HOMO and LUMO Calculation (HOMO 및 LUMO 계산에 의한 PAHs의 라디칼 반응위치 예측)

  • Lee, Byung-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • HOMO(the highest occupied molecular orbital) and LUMO(the lowest unoccupied molecular orbital) of four recalcitrant polycyclic aromatic hydrocarbons (PAHs) were calculated by MOPAC program(CaChe Co). The previous papers which reported experimental results about radical reaction of PAHs were reviewed. The reported radical reaction positions of four PAHs corresponded with predicted positions in which ${\Delta}E$(HOMO-LUMO) was high. From these results, it appears that determining the ${\Delta}E$(HOMO-LUMO) of a PAH is a promising method for predicting the radical reaction position.

A Theoretical Study of Electronic Structure and Properties of the Neutral and Multiply Charged $C_{60}$

  • 손만식;백유현;이종광;성용길
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.11
    • /
    • pp.1015-1019
    • /
    • 1995
  • The electronic structures and properties of the neutral and multiply charged C60n ions (n=2+ to 6-) with spin states have been investigated by semi-empirical MNDO calculations. In the ground state, C601- has the lowest total energy and the highest binding energy. The neutral C60 ion is supposed to have a high ionization potential and a high electron affinity. The HOMO and LUMO positions are lower in the cationic C60 than in the anionic C60. The LUMO energy becomes increasingly positive from C601- to C606- and the HOMO energy becomes increasingly negative from C602+ to C60. The HOMO-LUMO gap of the neutral C60 ion is higher than that of the multiply charged C60 ions. From the HOMO-LUMO gap, it seems reasonable to expect that electrons of the multiply charged C60 ions will be more polarizable than those of the neutral C60 ion. The HOMO and LUMO energies increase as the negative charge increases.

Theoretical Study of the HOMO-LUMO Gap, THG, DC-EFISHG, IDRI, and OKE in Polyenes (폴리엔의 HOMO-LUMO Gap, THG, DC-EFISHG, IDRI, OKE들에 대한 이론적 연구)

  • Kim, Tae-Won;Choi, U-Sung
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.8
    • /
    • pp.579-584
    • /
    • 1996
  • The HOMO-LUMO gap, and static and dynamic third-order polarizabilities for the polyenes are evaluated by means of the time-dependent Hartree Fock(TDHF) semiempirical PM3, AM1, MNDO, and MINDO/3 calculations. All calculations have performed on the series $C_2H_4$ to $C_{32}H_{34}$. The HOMO-LUMO gap increases in the order: MINDO/3> MNDO> PM3> AM1 levels. THG, DC-EFISHG, IDRI, and OKE for the various calculations show the order: AM1 > MNDO > PM3 levels. The various third-order effects for the polyenes have the following order: THG> DC-EFISHG> IDRI> OKE.

  • PDF

Theoretical investigation for the molecular structure and Charge transport property analysis of C16H16O3 as a candidate of liquid-crystal (액정 후보 물질로서 C16H16O3의 분자구조 및 전하이동성 특성분석에 관한 연구)

  • Park, Hye-Min;Kim, Seung-Joon
    • Analytical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.61-69
    • /
    • 2007
  • The geometrical parameters, total and relative energies, vibrational frequencies, the HOMO-LUMO energy gap, and reorganization energies for the neutral molecule, anion, and cation of $C_{16}H_{16}O_3$ have been determined using density functional method (DFT). The highest level of theory employed in this study is $B3LYP/6-311G^{**}$. Harmonic vibrational frequencies were determined at the $B3LYP/6-311G^{**}$ level of theory. All positive vibrational frequencies were obtained to confirm minimum structures. The HOMO-LUMO energy gap and reorganization energies were calculated to predict the charge transport property of liquid-crystal.

Standardization of Substituent Effects based on Benzobisoxazole Molecule (Benzobisoxazole 분자를 활용한 치환기 효과의 표준화)

  • Changhyeok Yang;Ki-Ho Chung;Kyoung Chul Ko
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.4
    • /
    • pp.185-190
    • /
    • 2024
  • Recently, it was reported that the benzobisoxazole (BBO) molecule can be used for independent modulation of the HOMO and LUMO energy levels. In this study, we utilized this interesting property of BBO to quantitatively investigate the substituent effects according the substituents. We designed and proposed four BBO model systems (1BBO, 2BBO, 3BBO and 4BBO) by extending the π-conjugation lengths based on a BBO molecule. Two directions of substitution (x-axis and y-axis) and 15 various substituents were considered. From strong correlation between the LUMO energy levels of x-axis substitution and HOMO energy levels of y-axis substitution calculated from DFT method, it is found that the standardization of substitution effects can be established from BBO model systems. In addition, we demonstrated that the HOMO values of y-axis substituted 3BBO show the best performance to define the order of substituent effects. Our proposed way can be used to expect the substituent effect of any arbitrary substituents and develop the organic sensors and organic light emitting diodes.

Electrochemical Study on Rhodamine 6G-Indole Based Dye for HOMO and LUMO Energy Levels

  • Kim, Hyungjoo;Lee, Do-Hyun;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.25 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • The energy levels are very important to investigate properties of organic dye materials. These values of energy levels can be calculated and compared with absorption spectra, cyclic voltammetric measurement and computer simulative calculation. In this study, absorption and emission changes were observed by complexation between rhodamine 6G based dye and mercury. This is related to spirolactam ring system of rhodamine 6G based dye. According to structural change of this dye, HOMO and LUMO energy levels were investigated and determined by their values with different approaches.

Characteristics of HOMO and LUMO Energy Potentials toward Rhodamine 6G-Naphthaldehyde Chemosensor

  • Kim, Hyungjoo;Lee, Do-Hyun;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Nowdays, the computational simulation of molecular energy potentials and the empirical evidence using electrochemical reduction/oxidation values are very significant factors to predict of molecule's energy potentials. The prepared chemosensor herein consists of spirolactam ring system in the structure, providing intra-structural change with metal cation binding. In this study, rhodamine 6G-Naphthaldehyde chemosensor was determined and compared with HOMO/LUMO energy levels by computational calculation and cyclic voltammogram method.

Study of HOMO and LUMO Energy Levels for Spirolactam Ring Moiety Using Electrochemical Approach

  • Kim, Hyungjoo;Lee, Sehoon;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.25 no.2
    • /
    • pp.83-88
    • /
    • 2013
  • Rhodamine dyes have been studied in various scientific areas due to their excellent photophysical properties. In particular, these rhodamine dyes are one of the most famous fluorophores as signal unit in chemosensor study. This is related to spirolactam ring system in rhodamine dyes. When the spirolactam ring is closed, there is nonfluorescence and colorless. Whereas, ring-opening of the corresponding spirolactam induces strong fluorescence and color. These absorption and emission changes are related to structural changes as well as electron energy potential levels such as HOMO and LUMO values. In this study, two different structures of rhodamine 6G hydrazide depending on the spirolactam ring system were investigated using absorption measurement, electrochemical measurement and computational calculations.

Prediction of Radical Reaction Positions in PAHs by Semi-Empirical Calculation (반경험적인 계산에 의한 다환방향족탄화수소류의 라디칼 반응위치 예측)

  • Lee, Byung-Dae
    • Journal of Environmental Science International
    • /
    • v.19 no.6
    • /
    • pp.755-759
    • /
    • 2010
  • Each four polycyclic aromatic hydrocarbons (PAHs) was reacted with OH radical at $1.5{\AA}$ distance by CAChe MOPAC 2000 program. These results were compared to those reported experimental results. Reaction positions of all four PAHs corresponded with predicted positions in which ${\Delta}$E(HOMO-LUMO) was approximately 4.7. Finally oxygen of OH radical combined with PAH and quinone form of products were produced. These results indicate that the proposed determining the ${\Delta}$E(HOMO-LUMO) can be effectively applied to predict reaction position of recalcitrant compounds such as dioxins, PCBs, POPs, and etc.

The Studies on Molecular Geometries and Electronic Structures of Substituted meso-Catecholic Porphyrins: DFT Methods and NSD

  • Park, Seung-Hyun;Kim, Su-Jin;Kim, Jin-Dong;Park, Sung-Bae;Huh, Do-Sung;Shim, Yong-Key;Choe, Sang-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1141-1148
    • /
    • 2008
  • Geometry optimizations and electronic structure calculations are reported for meso-tetraphenyl porphyrin (TPP) and a series of meso-substituted catecholic porphyrins (KP99150, KP99151, KP99152, KP99153, and KP99090) using density functional theory (DFT). The calculated B3LYP//RHF bond lengths are slightly longer than those of LSDA//RHF. The calculated electronic structures clearly show that TPP and meso-catecholic group contribute to π-electron conjugation along porphyrin ring for HOMO and LUMO, significantly reduced the HOMO-LUMO gap. The wavelength due to B3LYP energy gaps is favored with experimental value in Soret (B), and LSDA energy gaps are favored with experimental value in visible bands (Q). The electronic effect of the catecholic groups is to reduced energies of both the HOMOs and LUMOs. However, the distortion of porphyrin predominantly raises the energies of the HOMOs, so the net result is a large drop in HOMO and smaller drop in LUMO energies upon meso-substituted catecholic group of the porphyrin macrocycle as shown in KP99151 and KP99152 of Figure 5(a). These results are in reasonable agreement with normal-coordinate structural decomposition (NSD) results. The HOMO-LUMO gap is an important factor to consider in the development of photodynamic therapy (PDT).