DOI QR코드

DOI QR Code

Characteristics of HOMO and LUMO Energy Potentials toward Rhodamine 6G-Naphthaldehyde Chemosensor

  • Kim, Hyungjoo (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Lee, Do-Hyun (Korea Dyeing Technology Center) ;
  • Son, Young-A (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
  • Received : 2012.02.28
  • Accepted : 2013.03.21
  • Published : 2013.03.27

Abstract

Nowdays, the computational simulation of molecular energy potentials and the empirical evidence using electrochemical reduction/oxidation values are very significant factors to predict of molecule's energy potentials. The prepared chemosensor herein consists of spirolactam ring system in the structure, providing intra-structural change with metal cation binding. In this study, rhodamine 6G-Naphthaldehyde chemosensor was determined and compared with HOMO/LUMO energy levels by computational calculation and cyclic voltammogram method.

Keywords

References

  1. G. B. Ferreira, E. Hollauer, N. M. Comerlato, and J. Wardell, An Experimental and Theoretical Study of the Electronic Spectra of Tetraethylammonium [bis(1,-dthiole-2-thione-45-2-thione-45-ditho ato)M(III)] and Tetraethylammonium [bis(1,3-dithiole- 2-e-4,5-dithilato)M(III)] (M = Sb or Bi), Spectrochim. Acta Part A, 71(1), 215(008). https://doi.org/10.1016/j.saa.2007.12.010
  2. C. N. Ramachadran, D. Roy, and N. Sathyamurthy, Host-Guest Interaction in Endohedral Fullerenes, Chem. Physic. Lett., 461, 87(2008). https://doi.org/10.1016/j.cplett.2008.06.073
  3. I. Losito, F. Palmisano, and P. G. Zambonin, O-Phenylenediamine Electropolymerization by Cyclic Voltammetry Combined Ectrospray Ioization-Ion Tap Mass Spectrometry, Anal. Chem., 75(19), 4988 (2003). https://doi.org/10.1021/ac0342424
  4. C. J. Tonzola, M. M. Alam, W. Kainsky, and S. A. Jenekhe, New n-Type Organic Semiconductors: Synthesis, Single Crystal Structures, Cyclic Voltammetry, Photophysics, Electron Transport, and Electroluminescence of Series of Diphenylanthrazolines, J. Am. Chem. Soc., 125(44), 13548(2003). https://doi.org/10.1021/ja036314e
  5. H. Kim and Y. A. Son, Synthesis and Optical Properties of Novel Chemosensor Based on Rhodamine 6G, Textile Coloration and Finishing(J. Korean Soc. Dye. and Finish.), 24(4), 233(2012). https://doi.org/10.5764/TCF.2012.24.4.233
  6. S. P. Wu, T. H. Wang, and S. R. Liu, A Highly Selective Turn-On Fluorescent Chemosensor for Copper(II) Ion, Tetrahedron, 66(51), 9655(2010). https://doi.org/10.1016/j.tet.2010.10.054
  7. M. Beija, C. A. Afonso, and J. M. Martinho, Synthesis and Applications of Rhodamine Derivatives as Fluorescent Probes, Chem. Soc. Rev., 38(8), 2410(2009). https://doi.org/10.1039/b901612k
  8. W. Y. Kang and J. S. Park, Preparation of Polymeric Metal Complex Containing Azo Dye Rotaxane, Textile Coloration and Finishing(J. Korean Soc. Dye. and Finish.), 23(3), 163(2011). https://doi.org/10.5764/TCF.2011.23.3.163
  9. L. Huang, X. Wang, G. Xie, P. Xi, Z. Li, M. Xu, Y. Wu, D. Bai, and Z. Zeng, A New Rhodamine- Based Chemosensor $Cu^{2+}$ and The Study of Its Behaviour in Living Cells, Dalton Trans., 39(34), 7894(2010). https://doi.org/10.1039/c0dt00606h
  10. D. Wu, W. Huang, C. Duan, Z. Lin, and Q. Meng, Highly Sensitive Fluorescent Probe or Selective Detection of $Hg^{2+}$ in DMF Aqueous Media, Inorg. Chem., 46(5), 1538(2007). https://doi.org/10.1021/ic062274e
  11. X. Chen, T. Pradhan, F. Wang, J. S. Kim, and J. Yoon, Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives, Chem. Rev., 112(3), 1910(2012). https://doi.org/10.1021/cr200201z
  12. M. Dong, T. H. Ma, A. Zhang, Y. M. Dong, Y. W. Wang, and Y. Peng, A Series of Highly Sensitive and Selective Fluorescent and Colorimetric "Off- On" Chemosensors for Cu(II) Based on Rhodamine Derivatives, Dyes and Pigments, 87(2), 164 (2010). https://doi.org/10.1016/j.dyepig.2010.03.015
  13. G. H. Wu, D. X. Wang, D. Y. Wu, Y. Gao, and Z. Q. Wang, Highly Sensitive Optical Chemosensor for the Detection of $Cu^{2+}$ Using a Rhodamine B Spirolatam, J. Chem. Sci., 121(4), 543 (2008).
  14. H. S. Lee and J. H. Kim, Measurement of Physical Properties of Conducting Polymers, Polymer Sci. Technol, 18, 488(2007).
  15. Y. S. Kim, J. I. Shin, S. Y. Park, K. Jun, and Y. A. Son, Electrochemical Studies on Heptamethine Cyanine Dyes, Textile Coloration and Finishing(J. Korean Soc. Dye. and Finish.), 21(5), 35(2009). https://doi.org/10.5764/TCF.2009.21.5.035
  16. Y. S. Kim, S. H. Kim, T. K. Kim, and Y. A. Son, Characteristics of HOMO and LUMO Potentials by Altering Substituents: Computational and Electrochemical Determination, Textile Coloration and Finishing(J. Korean Soc. Dye. and Finish.), 20(5), 41(2008). https://doi.org/10.5764/TCF.2008.20.5.041

Cited by

  1. Electrochemical Study on Energy Potential Levels with Pyrene Molecule vol.25, pp.3, 2013, https://doi.org/10.5764/TCF.2013.25.3.159