Browse > Article
http://dx.doi.org/10.5806/AST.2007.20.1.061

Theoretical investigation for the molecular structure and Charge transport property analysis of C16H16O3 as a candidate of liquid-crystal  

Park, Hye-Min (Department of Chemistry, HanNam University)
Kim, Seung-Joon (Department of Chemistry, HanNam University)
Publication Information
Analytical Science and Technology / v.20, no.1, 2007 , pp. 61-69 More about this Journal
Abstract
The geometrical parameters, total and relative energies, vibrational frequencies, the HOMO-LUMO energy gap, and reorganization energies for the neutral molecule, anion, and cation of $C_{16}H_{16}O_3$ have been determined using density functional method (DFT). The highest level of theory employed in this study is $B3LYP/6-311G^{**}$. Harmonic vibrational frequencies were determined at the $B3LYP/6-311G^{**}$ level of theory. All positive vibrational frequencies were obtained to confirm minimum structures. The HOMO-LUMO energy gap and reorganization energies were calculated to predict the charge transport property of liquid-crystal.
Keywords
$C_{16}H_{16}O_3$; DFT(B3LYP); HOMO-LUMO gap; reorganization energy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S.-C. Yu, Y. Choi, and M. Lee, Macromolecules, 33(17), 6527-6533 (2000)   DOI   ScienceOn
2 P. Hohenberg and W. Kohn, Phys. Rev., 136(3B), B864-B871 (1964)   DOI
3 S. V. Sereda, T. V. Ti.mofeeva, M. Y. Antipin, and Y. T. Struchkov, Liq. Cryst. 11(6), 839-850 (1992)   DOI
4 C. Majumder, H. Mizuseki, and Y. Kawazoe, Journal of Molecular Structure, 681(1), 65-69 (2004)   DOI   ScienceOn
5 H. B. Schlegel, J. Comput. Chem., 3(2), 214-218 (1982)   DOI
6 A. D. Becke, J. Chem. Phys., 98(7), 5648-5652 (1993)   DOI   ScienceOn
7 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M.Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, GAUSSIAN 98, Revision A.7, Gaussian, Inc., Pittsburgh, PA, 1998
8 P. Pulay, In Modern Theoretical Chemistry, H. F. Schaefer, Ed. Plenum, New York, 4, 153 (1977)
9 A. Cabana, J. Bachand, and J. Giguere, Can. J. Phys., 52(12), 1949-1955 (1974)   DOI
10 V. Lemaur, D. A. Filho, V. Coropceanu, M. Lehmann, Y. Geerts, J. Piris, M. G. Debije, A. M. Craats, K. Sent-hilkumar, L. D. A. Siebbeles, J. M. Warman, J. Bredas, and J. Cornil, J. Am. Chem. Soc., 126(10), 3271-3279 (2004)   DOI   ScienceOn
11 C. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch, J. Comput. Chem., 17(1), 49-56 (1996)   DOI
12 F. Reinitzer, Monatsh. Chem. 9(1), 421-441 (1888)   DOI
13 V. Krishnakumara, G. Kereszturyb, T. Sundiusc, and R. Ramasamy, Journal of Molecular Structure, 702(1), 9- 21 (2004)   DOI   ScienceOn
14 J. D. Goddard, N. C. Handy, and H. F. Schaefer, J. Chem. Phys., 71(4), 1525-1530 (1979)   DOI
15 J. L. Bredas, J. P. Calbert, D. A. da Silva Filho, and J. Cornil, Proc. Natl. Acad. Sci. U.S.A. 99(9), 5804-5809 (2002)
16 N. Kuze. H. Fujiwara, H. Takeuchi, T. Egawa. and S. Konaka, J. Phys. Chem. A, 103(16), 3054-3061 (1999)
17 R. Boese, M. Y. Antipin, M. Nussbaumer, and D. Blser, Liq. Cryst. 12(3), 431-440 (1992)   DOI
18 R. Bhattacharyya and A. Kumar, Chemical Physics Letters. 372(1), 35-44 (2003)   DOI   ScienceOn
19 K. Tozaki, H. Hayashi, and K. Yamaguchi, J. Phys. Chem. B, 108(35), 13163-13176 (2004)   DOI   ScienceOn