• Title/Summary/Keyword: HNS 유출사고

Search Result 29, Processing Time 0.025 seconds

HNS 사고사례코드 설계에 관한 연구

  • Ha, Min-Jae;Jang, Ha-Yong;Yun, Jong-Hwi;Lee, Eun-Bang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.84-86
    • /
    • 2015
  • 최근 해상에서의 HNS 물동량 증가와 HNS 사고 유형 및 규모의 대형화, 사고대응체계 수립 필요성 대두 등과 같은 이유들로 인해 HNS 유출사고에 대한 중요성이 증가하고 있다. 본 연구에서는 HNS 사고사례를 표준화하기 위한 기초설계 연구를 수행함으로써 향후 HNS 유출사고를 표준화할 수 있는 HNS 사고사례코드를 개발하고자 한다.

  • PDF

Setting of Regional Priorities in Preparedness for Marine HNS Spill Accident in Korea by using Concentration Index (집중도 지수를 활용한 HNS 사고 대비 우선지역 선정)

  • Ha, Min-Jae;Jang, Ha-Lyong;Kim, Tae-Hyung;Yun, Jong-Hwui;Lee, Moon-Jin;Lee, Eun-Bang
    • Journal of Navigation and Port Research
    • /
    • v.41 no.6
    • /
    • pp.437-444
    • /
    • 2017
  • The concentration of the HNS Accident for each region was confirmed to prepare against an HNS Spill accident by using a Concentration Index which is used to assess industry concentration trend. This is to present the HNS Accident Concentration Index by combining HNS Accident Scale Concentration Index and an HNS Accident Frequency Concentration Index based on the data of marine spill accidents including the HNS accident. Based on the HNS Accident Concentration Index, Ulsan was identified as a top priority region for preparedness, Yeosu, Busan and Taean were identified as priority regions for preparedness, Gunsan, Mokpo, Wando, Incheon, Tongyeong, Pyeongtaek and Pohang were identified as necessary regions for preparedness, Donghae, Boryeong, Buan, Seogwipo, Sokcho, Jeju and Changwon, in which no marine spill accidents occurred, were identified as support regions for preparedness.

Comparison of Response Systems and Education Courses against HNS Spill Incidents between Land and Sea in Korea (국내 HNS 사고 대응체계 및 교육과정에 관한 육상과 해상의 비교)

  • Kim, Kwang-Soo;Gang, Jin Hee;Lee, Moonjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.662-671
    • /
    • 2015
  • As the type of Hazardous and Noxious Substances(HNS) becomes various and the transport volume of HNS increases, HNS spill incidents occur frequently on land and the sea. In view of various damages to human lives and properties by HNS spills, it is necessary to educate and train professional personnel in preparation for and response to potential HNS spills. This study shows the current state of response systems and education courses against HNS spill incidents on land and the sea to compare those with each other between land and sea in Korea. Incident command system on land are basically similar to that at sea, but leading authority which is responsible for combating HNS spills at sea is changeable depending on the location of HNS spill, as it were, Korea Coast Guard(KCG) is responsible for urgent response to HNS spill at sea, while municipalities are responsible for the response to HNS drifted ashore. Education courses for HNS responders on land are established at National Fire Service Academy(NFSA), National Institute of Chemical Safety(NICS), etc., and are diverse. Education and training courses for HNS responder at sea are established at Korea Coast Guard Academy(KCGA) and Marine Environment Research & Training Institute(MERTI), and are comparatively simple. Education courses for dangerous cargo handlers who work in port where land is linked to the sea are established at Korea Maritime Dangerous Goods Inspection & Research Institute(KOMDI), Korea Port Training Institute(KPTI) and Korea Institute of Maritime and Fisheries Technology(KIMFT). Through the comparison of education courses for HNS responders between land and sea, some recommendations such as extension of education targets, division of an existing integrated HNS course into two courses composed of operational level and manager level with respective refresh course, on-line cyber course and joint inter-educational institute course in cooperation with other relevant institutes are proposed for the improvement in education courses of KCG and KOEM(Korea Marine Environment Management Corporation) to educate and train professionals for combating HNS spills at sea in Korea.

Development of Response Scenario for a Simulated HNS Spill Incident (위험유해물질 유출사고 대응을 위한 가상시나리오 개발)

  • Lee, Moonjin;Oh, Sangwoo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.677-684
    • /
    • 2014
  • In response to possible HNS (Hazardous and Noxious Substance) spill accident, HNS spill accident scenario and response scenario were developed. The accident area listed in scenarios is the coastal area of Busan, and scenario for possible accident in the designated area and strategies to respond the accident were developed, respectively. The scenario for accident was developed by designating HNS spill according to risk evaluation of HNS and analysis of HNS spill probability along the coastal area of Busan, and then estimating possible and potential impact from the accident. The scenario for response has been suggested as a systematical responding operations in order to effectively reduce the estimated impact from the accident. The possible HNS spill accident on the seas around Busan, has been designated by the spillage of 1,000ton of xylene due to collision accident in Gamcheon Port, and the possible impacts occurred by the accident has been simulated with the help of the atmospheric and oceanic dispersion model of xylene. In the responding scenario for the accident, a phased strategies regarding emergency rescue of peoples, protection and recovery of xylene, protective measures for the responders, and post management of the accident have been suggested.

Developing status of the Preparedness and Response System for HNS accident (HNS 해상사고 대비.대응체제구축 추진현황)

  • Im, T.S.;Lee, S.H.;Choi, J.W.
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.05a
    • /
    • pp.65-70
    • /
    • 2006
  • The regulation of HNS has been intensified by the international trends including OPRC-HNS Protocol and '96 Convention which was driven by the high amounts of cargo. Due to the characteristics of HNS that would possibly bring potential damage with personnel and assets, effective management and prompt actions are required definitely. In order to respond effectively against HNS accidents, Korea Coast Guard (KCG) is in the process q development of HNS accident response manual and information system which allows On-Scene Coordinator(OSC) and personnels for rescue including an information for hazardous materials, sensitive area to be affected, solution methods and more. Furthermore, KCG is also building up establishment of national and local contingency plans for HNS in accordance with OPRC-HNS Protocol. It is also advised to proceed for the government to solve the anticipated obstacles that include protection equipments to get close to the site, experts allowing to manage accidents and organizations specialized for overall HNS related matters. The proposed issues described above are planned to conducted on basis of government.

  • PDF

Development of Modular HNS Accident Scenarios (모듈형 HNS 사고 시나리오 개발)

  • Ha, Min-Jae;Lee, Moon-Jin;Lee, Eun-Bang
    • Journal of Navigation and Port Research
    • /
    • v.41 no.3
    • /
    • pp.165-172
    • /
    • 2017
  • Current scenarios for marine spill accidents were developed based on probable maximum spill accidents. However,, accidents of similar scale to maximum spill accidents are virtually non-existent, and training or deployment of response equipment based on these scenarios can be cost prohibitive. Current scenarios require realism for practical use and need to be designed for purpose of use. In this study we developed scenarios that may replace current scenarios by using the HNS accident standard codes based on past accident cases. Scenarios were developed by modularizing the HNS accident standard code, that is classified into three scenarios: Maximum Frequency Scenario, Maximum Damage Scenario, and Maximum Vulnerability Scenario. The situation of an accident presented in each scenario developed in this process is much like a real accident, and therefore, it is has practical application.

부유성 HNS의 근접영역의 확산 특성에 대한 수치해석

  • Go, Min-Gyu;Jeong, Chan-Ho;Lee, Mun-Jin;Jeong, Jeong-Yeol;Lee, Seong-Hyeok
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2017.11a
    • /
    • pp.162-163
    • /
    • 2017
  • 해양 HNS(Hazardous and Noxious Substances)의 유출 사고 시, 막대한 인명 피해와 환경 훼손을 피하기 위해 유출 사고 조기 예측과 정확한 확산 경로를 예측하는 것이 필수적이다. 본 연구의 최종목적은 전산유체역학을 이용하여 HNS사고가 발생하였을 때 위험구역을 적절히 예측할 수 있는 수치해석기법을 개발하고, 다양한 해양사고조건과 환경영향을 고려하여 근접역에서의 2차원 확산 특성을 고찰하고 확산 현상을 예측하기 위한 모델을 개발하는 것이다. 본 연구에서는 상용코드인 ANSYS FLUENT(V. 17.2)을 사용하여 근접역에서의 2차원 확산특성을 모사하고 분석하였다. 특히, 누출된 HNS의 위치별 농도를 예측하기 위해 종수송방정식(Species Transport Equation)을 이용하였으며 RANS(Reynolds-Averaged Navier-Stokes) 방정식과 표준 $k-{\varepsilon}$ 모델을 이용하여 난류유동을 모사하였다. 해석된 결과는 문헌에서 얻어진 실험데이터와 상호비교하였으며 해수의 유속, HNS의 밀도에 따른 유층 두께, 해수면 HNS 평균 농도 그리고 HNS 전파 속도를 분석하였다. 유층 두께는 해류 유속에 따라 변화하며 변화 경향에 따라 두 구간으로 나눌 수 있다. 해류 전파 속도는 대체로 해류 유속과 선형적 비례관계를 갖는 것으로 나타났다. 해수면 평균 HNS 농도는 해류 유속에 선형적으로 비례하여 감소하며, HNS 밀도가 큰 경우 해수면 평균 HNS 체적 농도는 더 빠르게 감소하게 된다. 이러한 결과는 HNS 확산 특성을 분석하고 관련된 예측모델을 개발하는 데에 기여할 수 있다.

  • PDF

A Study on the Improvement of the Education and Training System for Response to Marine Chemical Incidents in Korea - Based on the Comparison of Systems between Korea and Foreign Countries - (해상화학사고 대응을 위한 국내 교육훈련체계 개선에 관한 연구 - 국내 체계와 외국 체계의 비교를 기반으로 -)

  • Kim, Kwang-Soo;Lee, Moonjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.847-857
    • /
    • 2017
  • The present situations of the education and training systems for the response to marine HNS spill incidents in domestic and foreign countries were reviewed and the plans to improve domestic system were suggested on the basis of the comparison between domestic and foreign education systems. There were almost no private education and training institutions in Korea, and they have not been activated, compared with those of foreign countries such as USA, Canada, Australia and UK. The domestic marine HNS-related education has been implemented uniformly under Korean government initiative. In addition, there were differences in the targets and duration of the education offered by Korea Coast Guard Academy (KCGA) and Marine Environment Research & Training Institute (MERTI) in Korea. Domestic HNS-related curriculum was relatively simple, compared with the curricula of foreign countries, and has not accepted two levels (operational level and manager level) required in HNS model courses of International Maritime Organization (IMO). The domestic education and training period was short relatively to those of foreign countries. The following suggestions were made to improve the education and training system for the response to domestic marine chemical incidents. In the short term, an HNS education and training management consultation body (tentative name) should be established, with both KCGA and MERTI participating jointly while maintaining the current system of the two institutions (KCGA and MERTI) simultaneously. In the more distant and long term, the HNS-related departments of KCGA and MERTI should be incorporated into a National Marine HNS Response Academy (tentative name) as unified system to enable international competitiveness.