• Title/Summary/Keyword: HMX

Search Result 57, Processing Time 0.023 seconds

Predicting Micro-Thickness of Phase Fronts in Propellants (추진제의 마이크로 스케일 상면 두께 예측)

  • Yoh Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.13-21
    • /
    • 2005
  • I consider the structure of steady wave system which is admitted by the continuum equations for materials that undergo phase transformations with exothermic chemical reaction. In particular, the dynamic phase front structures between liquid and gas phases, and solid and liquid phases are computationally investigated. Based on the one-dimensional continuum shock structure analysis, the present approach can estimate the nano-width of waves that are present in combustion. For illustration purpose, n-heptane is used in the evaporation and condensation analysis and HMX is used in the melting and freezing analysis of energetic materials of interest. On-going effort includes extension of this idea to include broad range of liquid and solid fuels, such as rocket propellants.

  • PDF

Mass Spectrometric Analysis of Eight Common Chemical Explosives Using Ion Trap Mass Spectrometer

  • Park, Sehwan;Lee, Jihyeon;Cho, Soo Gyeong;Goh, Eun Mee;Lee, Sungman;Koh, Sung-Suk;Kim, Jeongkwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3659-3664
    • /
    • 2013
  • Eight representative explosives (ammonium perchlorate (AP), ammonium nitrate (AN), trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), cyclonite (RDX), cyclotetramethylenetetranitramine (HMX), pentaerythritol tetranitrate (PETN), and hexanitrostilbene (HNS)) were comprehensively analyzed with an ion trap mass spectrometer in negative ion mode using direct infusion electrospray ionization. MS/MS experiments were performed to generate fragment ions from the major parent ion of each explosive. Explosives in salt forms such as AP or AN provided cluster parent ions with their own anions. Explosives with an aromatic ring were observed as either $[M-H]^-$ for TNT and DNT or $[M]^{{\cdot}-}$ for HNS, while explosives without an aromatic ring such as RDX, HMX, and PETN were detected as an adduct ion with a formate anion, i.e., $[M+HCOO]^-$. These findings provide a guideline for the rapid and accurate detection of explosives once portable MS instruments become more readily available.

Modeling of high energy laser heating and ignition of high explosives (고출력 레이저에 의한 가열과 폭약의 점화 모델링)

  • Lee, Kyung-Cheol;Kim, Ki-Hong;Yoh, Jai-Ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2008
  • We present a model for simulating high energy laser heating of metal for ignition of energetic materials. The model considers effect of ablation of steel plate with long laser pulses and continuous lasers of several kilowatts and the thermal response of well-characterized high explosives for ignition. Since there is enough time for the thermal wave to propagate into the target and to create a region of hot spot in the high explosives, electron thermal diffusion of ultra-short (femto- and pico-second) lasing is ignored; instead, heat diffusion of absorbed laser energy in the solid target is modeled with thermal decomposition kinetic models of high explosives. Numerically simulated pulsed-laser heating of solid target and thermal explosion of RDX, TATB, and HMX are compared to experimental results. The experimental and numerical results are in good agreement.

Analysis on Shock Attenuation of STS Bulkhead Initiator (STS 격벽착화기의 충격파 감쇠 특성 해석)

  • Kim, Bohoon;Jang, Seung-gyo;Yoh, Jai-ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.440-444
    • /
    • 2017
  • Two-dimensional hydrodynamic analysis was performed to analyze the attenuating characteristics of shock waves generated by the detonation of the bulkhead initiator. Through the interlocking analysis between HNS and HMX stacking initiator and STS bulkhead, we have precisely simulated detonation growth and pressure wave attenuation phenomena. The free surface velocity at the surface of the bulkhead was measured for quantitative comparison with the test data by VISAR. As a result, it was confirmed that the pressure attenuating pattern of the shock wave exponentially decreased according to the bulkhead thickness. The observed inflection point at the particle velocity measured over time is due to the subsequent propagation of the shock wave due to the rapid spallation of the interface between the detonator and the bulkhead.

  • PDF

Preparation of Hydrazinium 5-aminotetrazolate(HAT) with High Nitrogen Content and Energetic Material (고질소 에너지 물질 Hydrazinium 5-aminotetrazolate (HAT)의 제조)

  • Lee, Woonghee;Kim, Seung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.53-59
    • /
    • 2019
  • Solid fuel reacts with an oxidizer during combustion of a propellant to increase performance. Representative solid fuels are aluminum, cyclotrimethylenetrinitramine (RDX) and octahydro-1, 3,5,7-tetra nitro-1,3,5,7-tetrazocin (HMX). During combustion, these compounds generate white smoke by reacting with moisture and produce materials that are harmful to the environment, such as carbon monoxide, carbon dioxide, and methane gas. This study prepared a high-nitrogen-containing energetic material, hydrazinium 5-aminotetrazolate (HAT), which could be applied as a solid fuel. The compound was characterized by nuclear magnetic resonance (NMR) spectroscopy, and a thermal analysis was measured by differential scanning calorimetry (DSC). Also, the specific impulses and volumes of detonation gases were calculated using the EXPLO5 program.

PSAN 추진제의 성능 분석

  • 임유진;백국현
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.04a
    • /
    • pp.20-20
    • /
    • 1999
  • 질산 암모늄(ammonium nitrate, AN)은 고체 추진제의 산화제로 사용하기에는 산소 함유량이나 밀도가 과산화염화 암모늄(ammonium perchlorate, AP)보다 불리하여 로켓 추진기관용으로는 널리 사용되지 않았지만 가스발생기용 추진제의 원료로 소량 사용되어 왔었다. 그러나 근래에 와서 군사 무기에 대한 안전 규정이 강화되면서 화재나 폭발에 대한 위험도를 낮추고, 특히 연소 기체에서 유독성 염화수소의 발생량을 줄이기 위해서는 AP나 RDX, HMX와 같은 산화제를 AN으로 대체 사용하는 연구를 많이 수행하고 있다.

  • PDF

Hydrodynamic Analysis on Shock-induced Detonation in Pyrotechnic Initiator (파이로테크닉 착화기의 충격파 전달에 의한 폭굉 반응 해석)

  • Kim, Bohoon;Kang, Wonkyu;Jang, Seung-gyo;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.5
    • /
    • pp.19-30
    • /
    • 2016
  • We presented a hydrodynamic modeling necessary to accurately reproduce shock-induced detonation of pyrotechnic initiator. The methodology for such numerical prediction of shock propagation is quite straight forward if the models are properly implemented and solved in a well-formulated shock physics code. A series of SSGT(Small Scale Gap Test) and detailed hydrodynamic simulation are conducted to quantify the shock sensitivity of an acceptor that contains 97.5% RDX. A TBI(Through Bulkhead Initiator) system, consisting of a train configuration of Donor(HNS+HMX) - Bulkhead(STS) - Acceptor(RDX), were investigated to further validate the interaction between energetic and non-reactive materials for predicting the detonating response for successful operation of such small pyro device.

Numerical Simulation for Detonation Characteristics of Heavily Aluminized High Explosives (알루미늄 입자가 다량 함유된 고폭약의 데토네이션 특성에 대한 수치적 연구)

  • Kim, Wuhyun;Gwak, Min-cheol;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.10-18
    • /
    • 2017
  • The problem of non-ideal detonation propagation velocities in heterogeneous hybrid mixtures is studied in the case of a high explosive with suspended fine aluminum (Al) particles. Since there exist difference in the time scales of the characteristic induction and combustion of High Explosives and solid particles, the process of energy release behind the leading shock front occurs over an extended period of time. The problem is analyzed by the theory of the mechanics of multiphase media with mass, momentum and heat exchanges between particles and gases. The numerical results match the available experimental results of heavily aluminized (5~25% Al weight) HMX explosive obtained previously.

Effects of Fouling and Scaling on the Retention of Explosives in Surface Water by NF-the Role of Cake Enhanced Concentration Polarisation (지표수 조건의 나노여과공정에서 파울링 및 스케일링이 화약류 물질 잔류에 미치는 영향 연구 - 케익층 형성 및 농도분극 영향 분석)

  • Heo, Jiyong;Han, Jonghun;Lee, Heebum;Lee, Jongyeol;Her, Namguk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.4
    • /
    • pp.13-22
    • /
    • 2015
  • The combined impact of Dissolved Organic Matter (DOM) fouling and inorganic ($CaSO_4,Ca_3(PO_4)_2$) scaling on the retention of TNT (2, 4, 6-Trinitrotoluene), RDX (Hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine) and HMX (1, 3, 5, 7-Tetranitro-1, 3, 5, 7-tetrazocane) explosive contaminants by nano-filtration membrane were studied, since organic fouling and salt scaling are the major limitations for membrane filtration. Results reported here indicate that DOM fouling layer with a humic acid does not necessarily lead to an immediate loss of permeate flux but can result in a severe impact on the flux loss when both humic acid and inorganic scaltants were presented simultaneously. The $Ca_3(PO_4)_2$ mixed with humic acid showd most sever flux loss (42%) compared to that of only humic acid presence (8%). It could be a result that the scaling formation of the NF membrane was dominated by cake layer formation of DOM and it was along with pore blocking by the formation of crystals inside the porous active matrix of the NF membrane. In addition, these results indicated that the membrane selectivity of the explosives retention trended correlated with respect to increasing explosives size (listed by MW) based on greater steric interactions and followed the order (MW, g $mol^{-1}$; removal, %): HMX (296.15; 83%) ${\gg}$ RDX (222.12; 49%) ≋ TNT (227.13; 32%). Because the scaling and fouling layer could lead to a additional cake-enhanced concentration polarisation effect, the retention of explosives with the presence of humic acid in the feed solution and inorganic scaling formation on top of an organic fouling layer do not differ substantially retention from that of pure DI feed and NaCl solution.

영가 철로 구성된 Flow-Through Column내에서 미생물 처리에 이한 폭발성 물질의 제거 향상

  • 오병택;윤제용
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.73-76
    • /
    • 2004
  • Rusted iron could retain activity to redox-sensitive pollutants in batch reactor. Flow-through columns packed with permeable reactive iron filings (Fe$^{0}$ ) between soil and sand layers were used to evaluate the applicability of bio-enhanced iron barriers to treat explosives-contaminated groundwater. One column was bioaugmented with municipal anaerobic sludge to evaluate the enhancement of biodegradation. Military contaminants (RDX, HMX, TNT, 2,4DNT, 2,6DNT), which coexist in soils at military sites, were completely removed in the bioaugmented Fe$^{0}$ layer after 8 months of operation. Overall, this research suggests that Fe$^{0}$ barriers can effectively clean up groundwater contaminated with military explosives, and that treatment efficiency can be enhanced by bioaugmentation.

  • PDF