DOI QR코드

DOI QR Code

Numerical Simulation for Detonation Characteristics of Heavily Aluminized High Explosives

알루미늄 입자가 다량 함유된 고폭약의 데토네이션 특성에 대한 수치적 연구

  • Kim, Wuhyun (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Gwak, Min-cheol (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Yoh, Jai-ick (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2016.12.26
  • Accepted : 2017.05.02
  • Published : 2017.10.01

Abstract

The problem of non-ideal detonation propagation velocities in heterogeneous hybrid mixtures is studied in the case of a high explosive with suspended fine aluminum (Al) particles. Since there exist difference in the time scales of the characteristic induction and combustion of High Explosives and solid particles, the process of energy release behind the leading shock front occurs over an extended period of time. The problem is analyzed by the theory of the mechanics of multiphase media with mass, momentum and heat exchanges between particles and gases. The numerical results match the available experimental results of heavily aluminized (5~25% Al weight) HMX explosive obtained previously.

알루미늄 입자들이 함유된 고폭약의 비정상 데토네이션 전파속도에 대하여 수치 해석을 수행하였다. 알루미늄 입자의 점화와 연소는 고폭약에 비해 상대적으로 긴 시간이 요구되기 때문에, 알루미늄 입자연소에 의한 에너지 발산은 고폭약의 데토네이션 후방에서 이루어진다. 이러한 비정상 데토네이션에 대한 수치해석은 기체상과 균일하게 분포된 고체 입자와의 질량, 운동량, 에너지 교환을 다루는 이종매질 이론을 이용한다. 알루미늄 입자가 함유된 고폭약의 데토네이션 전파에 대한 수치 해석은 폭약 HMX에 대하여 수행되었으며, 5~25%의 알루미늄 함량과 0.5, 7, $15{\mu}m$의 알루미늄 입자크기에 대한 수치 해석 결과와 실험 결과를 비교하여 검증하였다.

Keywords

References

  1. Nigmatulin, R.I., "Dynamics of multiphase media," Hemisphere Pub. Corp., New York, N.Y., U.S.A., 1991.
  2. Veyssiere, B. and Khasainov, B., "A model for steady,plane, double-front detonations (DFD) in gaseous explosive mixtures with aluminum particles in suspension," Combustion and Flame, Vol. 85, No. 1, pp. 241-253, 1991. https://doi.org/10.1016/0010-2180(91)90191-D
  3. Fedorove, A.V. and Kratovaa, Y.V., "Calculation of Detonation Wave Propa -gation in a Gas Suspension of Aluminum and Inert Particles," Combustion, Explosion, and Shock Waves, Vol. 49, No. 3, pp. 335-47, 2013. https://doi.org/10.1134/S0010508213030106
  4. Kuhl, A.L., Khasainov, B. and Bell, J., "Two-Phase Model of Combustion in Explosions," 37th Int. Conference of ICT Energetic Materials: Insensitivity, Ageing, Monitoring, Karlsruhe, Germany, UCRLPROC-222284, Jun. 2006.
  5. Kuhl, A.L., Bell, J.B. and Beckner, V.E., "Heterogeneous Continuum Model of Aluminum Particle Combustion in Explosions," Combustion, Explosion, and Shock Waves, Vol. 46, No. 4, pp. 433-48, 2010. https://doi.org/10.1007/s10573-010-0058-9
  6. Zhang, F., "Detonation in Reactive Solid Particle-Gas Flow," Journal of Propulsion and Power, Vol. 22, No. 6, pp. 1289-1309, 2006. https://doi.org/10.2514/1.18210
  7. Zhang, F. and Gerrard, K., "Reaction Mechanism of Aluminum-Particle-Air Detonation," Journal of Propulsion and Power, Vol. 25, No. 4, pp. 845-858, 2009. https://doi.org/10.2514/1.41707
  8. Tarver, C.M., "Ignition and Growth Reactive Flow Modeling of Recent HMX/TATB Detonation Experiments," 19th Biennial APS Conference on Shock Compression of Condensed Matter, Tampa, F.L., U.S.A., LLNL-PROC-675475, Jun. 2015.
  9. Tarver, C.M., "Detonation Reaction Zones in Condensed Explosives," 14th APS Conference on Shock Compression of Condensed Matter, Baltimore, M.D., U.S.A., UCRL-CONF-213704, Jul.-Aug. 2005.
  10. Howard, W.M., Fried L.E. and Souers P.C., "Kinetic Modeling of Non-Ideal Explosives with Cheetah," Proceedings of the 1 Ith International Detonation Symposium, Snowmass, C.O., U.S.A., UCRL-CONF-127965, Aug.-Sep. 1998.
  11. Loboiko, B.G. and Lubyatinsky, S.N., "Reaction Zones of Detonating Solid Explosives," Combustion, Explosion, and Shock Waves, Vol. 36, No. 6, pp. 716-733, 2000. https://doi.org/10.1023/A:1002898505288
  12. Gogulya, M.F., Makhov, M.N., Dolgoborodov, A.Y., Brazhnikov, M.A., Arkhipov, V.I. and Shchetinin, V.G., "Mechanical sensitivity and detonation parameters of aluminized explosives," Combustion, Explosion, and Shock Waves, Vol. 40, No. 4, pp. 445-457, 2004. https://doi.org/10.1023/B:CESW.0000033568.39812.2c
  13. Howard, W.M., Fried, L.E. and Souers, P.C., "Modeling of non-ideal aluminized explosives," 11th APS Conference on Shock Compression of Condensed Matter, Snowbird, U.T., U.S.A., UCRL-JC-132717, Jun. 1999.
  14. Gogulya, M.F., Dolgoborodov, A.Y., Brazhnikov, M.A. and Baudin, G., "Detonation Waves in HMX/Al Mixtures-Pressure and Temperature Measurements," Proceedings of the 1 lth International Detonation Symposium, Snowmass, C.O., U.S.A., pp.979-988, Aug.-Sep. 1998.