• Title/Summary/Keyword: HMM algorithm

Search Result 240, Processing Time 0.022 seconds

HMM-Based Bandwidth Extension Using Baum-Welch Re-Estimation Algorithm (Baum-Welch 학습법을 이용한 HMM 기반 대역폭 확장법)

  • Song, Geun-Bae;Kim, Austin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.259-268
    • /
    • 2007
  • This paper contributes to an improvement of the statistical bandwidth extension(BWE) system based on Hidden Markov Model(HMM). First, the existing HMM training method for BWE, which is suggested originally by Jax, is analyzed in comparison with the general Baum-Welch training method. Next, based on this analysis, a new HMM-based BWE method is suggested which adopts the Baum-Welch re-estimation algorithm instead of the Jax's to train HMM model. Conclusionally speaking, the Baum-Welch re-estimation algorithm is a generalized form of the Jax's training method. It is flexible and adaptive in modeling the statistical characteristic of training data. Therefore, it generates a better model to the training data, which results in an enhanced BWE system. According to experimental results, the new method performs much better than the Jax's BWE systemin all cases. Under the given test conditions, the RMS log spectral distortion(LSD) scores were improved ranged from 0.31dB to 0.8dB, and 0.52dB in average.

HSA-based HMM Optimization Method for Analyzing EEG Pattern of Motor Imagery (운동심상 EEG 패턴분석을 위한 HSA 기반의 HMM 최적화 방법)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.747-752
    • /
    • 2011
  • HMMs (Hidden Markov Models) are widely used for biological signal, such as EEG (electroencephalogram) sequence, analysis because of their ability to incorporate sequential information in their structure. A recent trends of research are going after the biological interpretable HMMs, and we need to control the complexity of the HMM so that it has good generalization performance. So, an automatic means of optimizing the structure of HMMs would be highly desirable. In this paper, we described a procedure of classification of motor imagery EEG signals using HMM. The motor imagery related EEG signals recorded from subjects performing left, right hand and foots motor imagery. And the proposed a method that was focus on the validation of the HSA (Harmony Search Algorithm) based optimization for HMM. Harmony search algorithm is sufficiently adaptable to allow incorporation of other techniques. A HMM training strategy using HSA is proposed, and it is tested on finding optimized structure for the pattern recognition of EEG sequence. The proposed HSA-HMM can performs global searching without initial parameter setting, local optima, and solution divergence.

Speech Recognition Optimization Learning Model using HMM Feature Extraction In the Bhattacharyya Algorithm (바타차랴 알고리즘에서 HMM 특징 추출을 이용한 음성 인식 최적 학습 모델)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.11 no.6
    • /
    • pp.199-204
    • /
    • 2013
  • Speech recognition system is shall be composed model of learning from the inaccurate input speech. Similar phoneme models to recognize, because it leads to the recognition rate decreases. Therefore, in this paper, we propose a method of speech recognition optimal learning model configuration using the Bhattacharyya algorithm. Based on feature of the phonemes, HMM feature extraction method was used for the phonemes in the training data. Similar learning model was recognized as a model of exact learning using the Bhattacharyya algorithm. Optimal learning model configuration using the Bhattacharyya algorithm. Recognition performance was evaluated. In this paper, the result of applying the proposed system showed a recognition rate of 98.7% in the speech recognition.

Performance Comparison of GMM and HMM Approaches for Bandwidth Extension of Speech Signals (음성신호의 대역폭 확장을 위한 GMM 방법 및 HMM 방법의 성능평가)

  • Song, Geun-Bae;Kim, Austin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.119-128
    • /
    • 2008
  • This paper analyzes the relationship between two representative statistical methods for bandwidth extension (BWE): Gaussian Mixture Model (GMM) and Hidden Markov Model (HMM) ones, and compares their performances. The HMM method is a memory-based system which was developed to take advantage of the inter-frame dependency of speech signals. Therefore, it could be expected to estimate better the transitional information of the original spectra from frame to frame. To verify it, a dynamic measure that is an approximation of the 1st-order derivative of spectral function over time was introduced in addition to a static measure. The comparison result shows that the two methods are similar in the static measure, while, in the dynamic measure, the HMM method outperforms explicitly the GMM one. Moreover, this difference increases in proportion to the number of states of HMM model. This indicates that the HMM method would be more appropriate at least for the 'blind BWE' problem. On the other hand, nevertheless, the GMM method could be treated as a preferable alternative of the HMM one in some applications where the static performance and algorithm complexity are critical.

A Study on Mouth Features Detection in Face using HMM (HMM을 이용한 얼굴에서 입 특징점 검출에 관한 연구)

  • Kim, Hea-Chel;Jung, Chan-Ju;Kwag, Jong-Se;Kim, Mun-Hwan;Bae, Chul-Soo;Ra, Snag-Dong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04a
    • /
    • pp.647-650
    • /
    • 2002
  • The human faces do not have distinct features unlike other general objects. In general the features of eyes, nose and mouth which are first recognized when human being see the face are defined. These features have different characteristics depending on different human face. In this paper, We propose a face recognition algorithm using the hidden Markov model(HMM). In the preprocessing stage, we find edges of a face using the locally adaptive threshold scheme and extract features based on generic knowledge of a face, then construct a database with extracted features. In training stage, we generate HMM parameters for each person by using the forward-backward algorithm. In the recognition stage, we apply probability values calculated by the HMM to input data. Then the input face is recognized by the euclidean distance of face feature vector and the cross-correlation between the input image and the database image. Computer simulation shows that the proposed HMM algorithm gives higher recognition rate compared with conventional face recognition algorithms.

  • PDF

Heart Sound-Based Cardiac Disorder Classifiers Using an SVM to Combine HMM and Murmur Scores (SVM을 이용하여 HMM과 심잡음 점수를 결합한 심음 기반 심장질환 분류기)

  • Kwak, Chul;Kwon, Oh-Wook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.149-157
    • /
    • 2011
  • In this paper, we propose a new cardiac disorder classification method using an support vector machine (SVM) to combine hidden Markov model (HMM) and murmur existence information. Using cepstral features and the HMM Viterbi algorithm, we segment input heart sound signals into HMM states for each cardiac disorder model and compute log-likelihood (score) for every state in the model. To exploit the temporal position characteristics of murmur signals, we divide the input signals into two subbands and compute murmur probability of every subband of each frame, and obtain the murmur score for each state by using the state segmentation information obtained from the Viterbi algorithm. With an input vector containing the HMM state scores and the murmur scores for all cardiac disorder models, SVM finally decides the cardiac disorder category. In cardiac disorder classification experimental results, the proposed method shows the relatively improvement rate of 20.4 % compared to the HMM-based classifier with the conventional cepstral features.

Decision Tree Based Context Clustering with Cross Likelihood Ratio for HMM-based TTS (HMM 기반의 TTS를 위한 상호유사도 비율을 이용한 결정트리 기반의 문맥 군집화)

  • Jung, Chi-Sang;Kang, Hong-Goo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.174-180
    • /
    • 2013
  • This paper proposes a decision tree based context clustering algorithm for HMM-based speech synthesis systems using the cross likelihood ratio with a hierarchical prior (CLRHP). Conventional algorithms tie the context-dependent HMM states that have similar statistical characteristics, but they do not consider the statistical similarity of split child nodes, which does not guarantee the statistical difference between the final leaf nodes. The proposed CLRHP algorithm improves the reliability of model parameters by taking a criterion of minimizing the statistical similarity of split child nodes. Experimental results verify the superiority of the proposed approach to conventional ones.

HMM with Global Path constraint in Viterbi Decoding for Insolated Word Recognition (전체 경로 제한 조건을 갖는 HMM을 이용한 단독음 인식)

  • Kim, Weon-Goo;Ahn, Dong-Soon;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.1E
    • /
    • pp.11-19
    • /
    • 1994
  • Hidden Markov Models (HMM's) with explicit state duration density (HMM/SD) can represent the time-varying characteristics of speech signals more accurately. However, such an advantage is reduced in relatively smooth state duration densities or ling bounded duration. To solve this problem, we propose HMM's with global path constraint (HMM/GPC) where the transition between states occur only within prescribed time slots. HMM/GPC explicitly limits state durations and accurately describes the temproal structure of speech simply and efficiently. HMM's formed by combining HMM/GPC with HMM/SD are also presented (HMM/SD+GPC) and performances are compared. HMM/GPC can be implemented with slight modifications to the conventional Viterbi algorithm. HMM/GPC and HMM/SD_GPC not only show superior performance than the conventional HMM and HMM/SD but also require much less computation. In the speaket independent isolated word recognition experiments, the minimum recognition eror rate of HMM/GPC(1.6%) is 1.1% lower than the conventional HMM's and the required computation decreased about 57%.

  • PDF

Content-based Image Retrieval using an Improved Chain Code and Hidden Markov Model (개선된 chain code와 HMM을 이용한 내용기반 영상검색)

  • 조완현;이승희;박순영;박종현
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.375-378
    • /
    • 2000
  • In this paper, we propose a novo] content-based image retrieval system using both Hidden Markov Model(HMM) and an improved chain code. The Gaussian Mixture Model(GMM) is applied to statistically model a color information of the image, and Deterministic Annealing EM(DAEM) algorithm is employed to estimate the parameters of GMM. This result is used to segment the given image. We use an improved chain code, which is invariant to rotation, translation and scale, to extract the feature vectors of the shape for each image in the database. These are stored together in the database with each HMM whose parameters (A, B, $\pi$) are estimated by Baum-Welch algorithm. With respect to feature vector obtained in the same way from the query image, a occurring probability of each image is computed by using the forward algorithm of HMM. We use these probabilities for the image retrieval and present the highest similarity images based on these probabilities.

  • PDF

Features Detection in Face eased on The Model (모델 기반 얼굴에서 특징점 추출)

  • 석경휴;김용수;김동국;배철수;나상동
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.134-138
    • /
    • 2002
  • The human faces do not have distinct features unlike other general objects. In general the features of eyes, nose and mouth which are first recognized when human being see the face are defined. These features have different characteristics depending on different human face. In this paper, We propose a face recognition algorithm using the hidden Markov model(HMM). In the preprocessing stage, we find edges of a face using the locally adaptive threshold scheme and extract features based on generic knowledge of a face, then construct a database with extracted features. In training stage, we generate HMM parameters for each person by using the forward-backward algorithm. In the recognition stage, we apply probability values calculated by the HMM to input data. Then the input face is recognized by the euclidean distance of face feature vector and the cross-correlation between the input image and the database image. Computer simulation shows that the proposed HMM algorithm gives higher recognition rate compared with conventional face recognition algorithms.

  • PDF