본 논문에서는 HMM 의 이산분포를 연속분포로 근사시키는 준 연속분포 HMM 에 의한 한국어 단어인식에 관하여 연구하였다. 이 모델의 생성과정에서는 입력벡터의 출력확률을 혼합 다차원 정규분 포로 가정하여 입력벡터의 확률함수와 코드위드의 심볼출력을 선형결합하므로써, 연속분포 모델로 근사 시켰으며, 단어인식과정에서는 생성모델에 의해 이산분포 모델에서 발생되는 양자와 왜곡을 감소시키므 로써 인식률을 향상시켰다. 이 방법을 평가하기 위하여 DDD 지역명을 대상으로 이산분포 HMM과 준연 속분포 HMM 의 비교실험을 수행하였다. 그 결과 준연속분포 HMM 에 의하여 이산분포 HMM 보다 향상된 인식률을 얻을 수 있었다.
두꺼운 꼬리 분포와 레버리지효과 등의 금융시계열의 전형적인 특징에도 불구하고 기존 빈도론적 접근법에서는 이를 명시적으로 포착하는 확률변동성모형이 제시된 바 없다. 본 연구는 빈도론적 접근법에서 수익률 금융시계열의 두꺼운 꼬리 분포와 레버리지효과를 명시적으로 포착할 수 있는 근사적인 확률변동성모형 설정을 제시하고 이에 대한 Langrock 등 (2012)의 HMM근사를 이용한 최우추정을 제안한다. 본 연구는 다양한 모의실험과 실증분석을 통해 본 연구에서 제안하는 근사모형이 두꺼운 꼬리 분포와 레버리지효과를 정밀하고 효과적으로 추정할 수 있음을 보인다.
기존의 HMM을 이용한 음성인식기는 대부분 ML 추정에 기초한 Baum-Welch 알고리듬으로 학습되었다. ML학습은 기본적으로 무한한 양의 학습 데이터가 주어지고, 각 모델들이 서로 독립이라는 가정에 기초한다. 하지만 실제적인 학습의 경우에 각 모델들이 서로 독립이라고 보기 어렵고, 학습 데이터의 양도 상당히 제한되어 있어서 인식기의 변별력을 저하시키는 주된 원인이 되고 있다. 본 논문에서는 전통적인 패턴분류기법인 Bayes 결정이론에 따라 최소오차율분류를 위한 MAP 수식화를 유도하고, 그에 기초한 HMM의 변별력 있는 학습 알고리듬을 제안한다. 최소오차율분류를 근사화한 사후확률로 표현된 비용함수를 정의하고, 그 비용함수에 조건부 경사강하법을 적용한다. 제안된 알고리듬을 분류하기 어려운 한국어 단음절 인식에 적용한 결과, 기존의 ML 알고리듬으로 학습한 경우 발생한 오인식 개수의 약 10% 가량이 개선되었다.
은닉 마코프 모델은 이산 동역학을 표현할 수 있는 확률 모형이다. 우도 함수 최적화를 수행하는 전통적인 Baum-Welch 학습 알고리즘은 국소해로 수령하기 쉬우며, 우도함수의 특성상 복잡한 모델을 선호하는 바이어스가 존재한다. 베이지안 프레임워크에서는 파라미터를 랜덤 변수로 보고 이에 대한 사후 확률 분포를 추정하여 이 문제를 해결할 수 있다. 본 논문에서는 베이지안 추정을 위한 결정론적 근사화 기법인 변분 베이지안 방법을 이용, 출력 노드에 가우시안 혼합 노드를 지니는 일반화된 HMM의 추론 방법을 유도한다. 인공 데이터에 대한 실험을 통해, 본 방법이 효과적인 HMM 학습을 수행할 수 있음을 보인다.
본 연구에서는 음성신호의 왜곡에 대해 음성 부재 확률을 고려한 MMSE(Minimum Mean Square Error) STSA(Short-Time Spectral Amplitude Estimator)를 전처리기로 도입하여 HMM(Hidden Markov Model)에 기반 한 음성인식시스템의 인식성능을 평가하였다. 음성인식 시스템의 실시간 구현을 고려하여, MMSE STSA 기법을 음성개선을 위한 전처리기로 사용할 때 MMSE STSA의 이득계산 과정에서 많은 계산량이 요구되는 modified Bessel 함수를 근사 화하여 사용하였다.
비디오 요약의 첫 걸음은 샷(shot) 변환의 검출이다. 이러한 샷 변환은 점진적인 변환과 급진적인 변환이 있다. 지금까지 급진적인 샷 변환은 이미 주어진 한계치나 연속된 두 프레임의 이미지에 기반을 둔 거리를 이용하여 검출하였고 점진적 변환 또한 일반적으로 한계치를 이용하여 검출하였다. 그러나 한계치에 따라 그 결과가 확연히 달라지고 또한 그 한계치를 정하는 것도 어려운 문제이다. 이 논문에서는 이런 문제의 해결과 MPEG 압축 비디오 상에서 점진적 변화의 검출뿐만 아니라 분류를 해결하는 방법을 제시하였다. 논문에서는 한계치를 사용하지 않은 은닉 마르코프 모델과 MPEG의 근사 DC 값을 이용하여 보다 빠르고 정확한 결과를 얻도록 하였다. 그리고 히스토그램의 차이뿐만 아니라 매크로 블록 (macro block)의 차이라 불리는 새로운 척도를 도입하여 보다 정확한 값을 얻도록 하였다. 은닉 마르코프 모델은 샷, 페이드(fade), 디졸브(dissolve), 컷(cut) 등의 4개의 상태를 갖게 하고 학습은 Baum-Welch 알고리즘으로 필요한 변수들을 추정하였다. 그리고 특정 벡터에 Viterbi 알고리즘을 적용하여 원하는 상태를 얻을 수 있다. 대부분의 실험 결과를 보면 새로 제안한 척도를 사용한 방법이 히스토그램의 차만을 이용한 방법보다 더 좋은 결과를 나타내었으며 이산적 마르코프 모델보다 연속적 마르코프 모델이 좋은 결과를 보여준다.
본 논문에서는 잡음 환경에서 보다 강인한 성능을 얻기 위하여 음성 모델 기반의 효과적인 특징 보상 기법을 제안한다. 일반적인 모델 기반의 특징 보상 기법은 오열 음성 데이터베이스를 이용한 훈련 과정을 필요로 하므로 온라인 상에서의 적응 과정에 적합하지 않다. 제안한 방법에서는 보정 인자 추정 과정에서 병렬 모델 결합 기법을 도입함으로써 훈련 과정을 필요하지 않게 하였다. 모델의 결합 과정이 HMM 전체가 아닌 가우시안 혼합 (Mixture) 모델에만 적용이 되므로, 계산이 비교적 간단하게 되어 온라인 상에서의 모델 결합을 가능하게 하였다. 병렬적 모델 결합의 도입은 잡음 모델의 독립적인 이용을 가능하게 하였고, 본 논문에서는 MAP (Maximum A Posteriori) 적응을 통해 잡음 모델 갱신을 실시하였다 또한 잡음 오열 과정에 대한 근사화를 통해 연속적 형태의 채널 정규화 기법을 유도하여 적용하였다. 보다 효율적인 구현을 위하여 선택적인 모델 결합 방식을 도입함으로써 연산량을 줄일 수 있는 방법을 제시하였다. 제안한 특징 보상 기법이 부가적인 배경 잡음과 채널 왜곡이 존재하는 잡음 환경에서 음성 인식 시스템의 성능을 향상시키는데 효과적임을 실험을 통해 확인할 수 있었다.
본 논문에서는 잡음에 강한 음성 인식기를 위한 모델 파라미터 변환 방식에 관하여 살펴보았다. 모델 파라미터 변환에 있어서 잡음에 대한 어떠한 통계 모델도 사용하지 않고 각 단어 단위로 수행되어 실시간 음성 인식이 가능하도록 하였다. Parallel model combination(PCM)은 본 논문에서 제안한 방법과의 성능 비교를 위하여 cepstrum 영역에서 구현되었다. 본 논문에서 제안한 PCM 방법은 modified PCM(MPMC)라 하며, 이 방법은 각 hidden Markov mode(HMM)의 state별로 평균적인 가우시안 믹스처(Gaussian mixture)의 변화률과 개별적인 변화률간에 결합지수를 이용하여 평균을 재조정한다. 또한, vector Taylor series 근사화를 이용한 모델 파라미터 변환을 위하여 cepstrum 영역에서의 환경모델 예측을 위한 expectation-maximization(EM) 해를 유도하여 구현하였다. 본 논문에서 구현된 알고리즘들의 성능 위해 HMM 인식기를 이용한 화자독립 고립단어 인식을 수행하였다. 시용된 잡음은 가우시안 백색 잡음과 주행중에 녹음된 자동차 잡음이며, 각 잡음울 signal-to-noise ratio(SNR)별로 사용하였다. 잡음의 모델은 1 state HMM으로 단어시작 3 프레임(frame)을 이용하여 만들어졌다. 인식 결과는 VTS 접근방식을 이용하였을 경우 매우 우수한 인식률을 나타내었으며, MPMC의 경우도 기존의 PMC보다 인식률이 향상되었다. 특히, 영차 VTS의 경우는 단순히 평균만을 조정하였음에도 불구하고 PMC와 MPMC보다 인식률이 우수하게 나타났다.
본 논문에서는 EPIC(Electric Potential Integrated Circuit) 센서를 통해 추출된 동작신호에 대해 이산 웨이블릿 변환(Discrete Wavelet Transform : DWT)과 선형 판별분석(Linear Discriminant Analysis : LDA), Support Vector Machine(SVM)을 사용하는 동작 분류 시스템을 제안한다. EPIC 센서 신호에 대해 이산 웨이블릿 변환을 사용하여 웨이블릿 계수인 근사계수(approximation coefficients)와 상세계수(detail coefficients)를 구한 후, 각각의 웨이블릿 계수에 대해 특징 파라미터를 추출한다. 이 때, 특징 파라미터는 14개의 통계적 특징 추출 파라미터 중에 유전자 알고리즘(Genetic Algorithm : GA)을 통하여 선택한 우수한 특징 파라미터이다. 웨이블릿 계수들에서 추출한 특징 파라미터는 선형 판별분석을 적용하여 차원을 축소하고 SVM의 훈련 및 분류에 사용한다. 실험결과, 4가지 동작에 대한 EPIC 센서 신호분류에서 제안된 방법의 분류율이 99.75%로 원신호에 대한 HMM 분류율 97% 보다 높은 정확률을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.