• Title/Summary/Keyword: HMC-1 cells

Search Result 144, Processing Time 0.035 seconds

Characterizations of Kefir Grains in Fermented Whey and Their Effects on Inflammatory Cytokine Modulation in Human Mast Cell-1 (HMC-1) (Kefir grain에 의한 유청발효액의 특성과 human mast cell-1 (HMC-1)에서 염증 cytokine 조절에 미치는 영향)

  • Son, Ji Yoon;Park, Young W.;Renchinkhand, Gereltuya;Han, Jung Pil;Bum, Jin Woo;Paik, Seung-Hee;Lee, Jo Yoon;Nam, Myoung Soo
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.689-697
    • /
    • 2016
  • Kefir is an acidic-alcoholic fermented milk product originating from the Caucasian mountains. Kefir has long been known for its probiotic health benefits, including its immunomodulatory effects. The objectives of this study were to investigate the properties of a fermented whey product and to examine the effects of kefir grains on the in vitro immune-modulation of human mast cell-1 (HMC-1). The results showed that the whey fermented by kefir grains contained the maximum lactic acid bacteria and yeast for 16 hr by 1.83×108 and 6.5×105 CFU/ml, respectively, and lactose and whey proteins were partially hydrolyzed. The experimental whey fermented by kefir grains exhibited an in vitro anti-inflammatory effect on the HMC-1 line for 8, 16, and 24 hr, and this effect induced the expression of interleukin (IL)-4 as a pro-inflammatory cytokine, but not for 48 hr by RT-PCR in HMC-1 cells. In addition, the same phenomenon was observed for the expression of IL-8 as a pro-inflammatory cytokine by the kefir-fermented whey during the same periods of 8-48 hr under the same conditions. These cytokines resulted in the production of IL-4 at 20-25 ng in HMC-1 cells for 8, 16, and 24 hr, whereas 5 ng was produced for 48 hr by the fermented whey. In contrast, IL-8 was produced at 15-20 ng in HMC-1 cells during 4, 8, 16, and 24 hr, while 7 ng was produced at 48 hr. It was concluded that the whey fermented by kefir grains possesses a potential anti-inflammatory function, which could be used for an industrial application as an ingredient of functional foods and pharmaceutical products.

Citrus unshiu Water Extract Inhibits Trypsin-induced $TNF-{\alpha}$ and Tryptase Productions by Blocking the ERK Phosphorylation and Trypsin Activity

  • Kang, Ok-Hwa;Kim, Dae-Ki;Lee, Young-Mi
    • Natural Product Sciences
    • /
    • v.10 no.5
    • /
    • pp.211-216
    • /
    • 2004
  • Citrus unshiu (Rutaceae) has long been known as an anti-inflammatory and anti-allergic agent. In the present study, the inhibitory effect of CUWE (Citus unshiu water extract) on the production of $TNF-{\alpha}$ and tryptase was examined. In addition, a possible mechanism for the inhibition of trypsin-stimulated human leukemic mast cell-1 (HMC- 1 ) activation was determined. To do so, $TNF-{\alpha}$ production from the HMC-1 cells that were stimulated by trypsin (100 nM) in the presence or absence of CUWE $(10,\;100,\;and\;100\;{\mu}g/ml)$ was measured by enzyme-linked immunosorbent assay (ELISA) and reverse transcription-PCR. The tryptase production was evaluated by reverse transcription-PCR. Extracellular signal-regulated kinase (ERK) activation was analyzed by Western blot. Trypsin activity was measured by using Bz-DL-Arg-p-nitroanilide (BAPNA) as substrate. Results showed that the CUWE inhibited production of both $TNF-{\alpha}$ and tryptase from the trypsin-stimulated HMC-1 in a dose-dependent manner. The CUWE a1so inhibited the ERK phosphorylation and trysin activity. These results indicate that the CUWE had an inhibitory effect on $TNF-{\alpha}$ and the tryptase productions by blocking the ERK phosphorylation and trypsin activity.

Effect of lactoferrin hydrolysates on inflammatory cytokine modulation in HEK-293, RBL-2H3, and HMC-1 cells

  • Son, Ji Yoon;Bae, Hyung Churl;Renchinkhand, Gereltuya;Nam, Myoung Soo;Kim, Woan-sub
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.83-93
    • /
    • 2020
  • Lactoferrin (LF) is an iron-binding glycoprotein that is present in colostrum, milk, and other body secretions. The objective of this study was to investigate the effects of lactoferrin hydrolysates (LHs) on the production of immunomodulatory factors, including inflammatory related cytokines. The nuclear factor (NF)-κB reporter assay using human embryonic kidney 293 cells (HEK-293) revealed that NF-κB activity was significantly decreased by 1, 50, and 100 ㎍/mL of LH and the fractions above and below the 10 kDa LH. The mRNA expression of interferon (IFN)-γ in rat basophilic leukemia mast cells (RBL-2H3) treated with the fraction above the 10 kDa LH decreased in a dose-dependent manner, but the cells treated with LH and the fraction below the 10 kDa LH showed an increased expression of IFN-γ in a dose-dependent manner. The level of cyclooxygenase (COX)-2 expression decreased dose-dependently in RBL-2H3 cells treated with LH and the fraction above the 10 kDa LH, but the cells treated with the fraction below the 10 kDa LH showed an increased COX-2 expression in a dose-dependent manner. The mRNA expression of interleukin (IL)-4) was dose-dependently decreased by the fraction below the 10 kDa LH in human mast cells (HMC-1). The mRNA expressions of tumor necrosis factor (TNF)-α and IL-6 were significantly dose-dependently decreased by the fractions above and below the 10 kDa LH, but was dose-dependently increased by LH. The production of IL-4 was a little increased by the fraction above the 10 kDa LH compared to the positive control, but was decreased with LH and the fraction below the 10 kDa LH in HMC-1 cells. It was concluded that LF hydrolysates had an immunomodulating effect on anti-, pro-inflammatory and anti-allergic reactions.

T Cell Immunoglobulin Mucin Domain (TIM)-3 Promoter Activity in a Human Mast Cell Line

  • Kim, Jung Sik;Shin, Dong-Chul;Woo, Min-Yeong;Kwon, Myung-Hee;Kim, Kyongmin;Park, Sun
    • IMMUNE NETWORK
    • /
    • v.12 no.5
    • /
    • pp.207-212
    • /
    • 2012
  • T cell immunoglobulin mucin domain (TIM)-3 is an immunomodulatory molecule and upregulated in T cells by several cytokines. TIM-3 also influences mast cell function but its transcriptional regulation in mast cells has not been clarified. Therefore, we examined the transcript level and the promoter activity of TIM-3 in mast cells. The TIM-3 transcript level was assessed by real-time RT-PCR and promoter activity by luciferase reporter assay. TIM-3 mRNA levels were increased in HMC-1, a human mast cell line by TGF-${\beta}1$ stimulation but not by stimulation with interferon (IFN)-${\alpha}$, IFN-${\lambda}$, TNF-${\alpha}$, or IL-10. TIM-3 promoter -349~+144 bp region relative to the transcription start site was crucial for the basal and TGF-${\beta}1$-induced TIM-3 promoter activities in HMC-1 cells. TIM-3 promoter activity was increased by over-expression of Smad2 and Smad4, downstream molecules of TGF-${\beta}1$ signaling. Our results localize TIM-3 promoter activity to the region spanning -349 to +144 bp in resting and TGF-${\beta}1$ stimulated mast cells.

Undaria pinnatifida Inhibits the Mast Cell-Mediated Inflammatory Response via NF-κB/Caspase-1 Suppression

  • Jeon, Yong-Deok;Lee, Su-Hyun;Kim, Su-Jin
    • Korean Journal of Plant Resources
    • /
    • v.34 no.6
    • /
    • pp.503-509
    • /
    • 2021
  • Marine sources as potential treatment options for various diseases have been a subject of growing interest. However, information on the anti-inflammatory mechanism employed by Undaria pinnatifida (UP) remains limited. The present study was conducted to investigate the mechanisms of UP on the mast cell-mediated inflammatory response. To determine the pharmacological mechanism of UP in inflammatory reaction, we evaluated the effects of UP on interleukin (IL)-6, IL-8 and tumor necrosis factor (TNF)-α production and nuclear factor-κB (NF-κB) and caspase-1 activation in calcium ionophore A23187 plus phorbol 12-myristate 13-acetate-stimulated human mast cells-1 (HMC-1). The results showed that UP suppressed IL-6, IL-8 and TNF-α production in a dose-dependent manner. Moreover, UP significantly attenuated NF-kB/caspase-1 activation in stimulated HMC-1. Collectively, these findings provide experimental evidence that UP may be a useful candidate for the inflammation-related diseases treatment.

Study on the Anti-inflammatory Effects of Soyangin-Hyeongbangpaedok-san (소양인 형방패독산의 함염증효과에 대한 실험적 연구)

  • Heo, Jeong-Won;Kang, Hee;Ahn, Kwang-Seok;Kim, Sung-Hoon;Choi, Seung-Hoon;Ahn, Kyoo-Seok;Shim, Bum-Sang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.443-451
    • /
    • 2009
  • Soyangin-Hyeongbangpaedok-san(SHBPDS) is used for treating upper respiratory infections, In an effort to investigate the anti-inflammatory effects of SHBPDS, we measured production of several cytokines and immunoglobulin in various immune cells. SHBPDS decreased the secretion of TNF-${\alpha}$, but not that of IL-6 in PMA/A23187 stimulated HMC-1 cells. As for mouse B cells, it induced proliferation and caused differential effects in expressions of surface IgE as determined by flow cytometry and secretions of IgE, IgG1, ILA and INF-${\gamma}$as measured by ELISA but showed little change in CD23 or CD69 expression. SHBPDS increased proliferation in anti-CD3/anti-CD28 stimulated CD4 Th cells. Under the Th1/Th2 polarization conditions, SHBPDS at 200 ${\mu}g/m{\ell}$ suppressed the secretion of INF-${\gamma}$ and IL-4. Based on the above results, we conclude that SHBPDS has antiinflammatory activities in mast cells and different immunomodulatroy effects in B cells and Th cells.

p-coumaric acid, an active ingredient of Panax ginseng, ameliolates atopic dermatitis-like skin lesions through inhibition of thymic stromal lymphopoietin in mice

  • Moon, Phil-Dong;Han, Na-Ra;Lee, Jin Soo;Kim, Hyung-Min;Jeong, Hyun-Ja
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.176-182
    • /
    • 2021
  • Background: Atopic dermatitis (AD) is associated with chronic skin inflammatory reactions. p-coumaric acid (pCA) is an active ingredient of Panax ginseng Meyer (Araliaceae). Methods: Here, we estimated an anti-AD effect of pCA on activated mast cells, activated splenocytes, and a mouse model of AD. Cytokines levels were measured by ELISA and protein activation was analyzed by Western blotting. 2,4-dinitrofluorobenzene (DNFB) was used to induce AD-like skin lesions. Results: The treatment with pCA suppressed the productions and mRNA expressions of thymic stromal lymphopoietin (TSLP), TNF-α, IL-6, and IL-1β in HMC-1 cells. pCA downregulated the expressions of RIP2 and caspase-1, phosphorylated-(p)p38/pJNK/pERK, and pIKKβ/pIkBα/NF-κB in HMC-1 cells. pCA also decreased the productions of TSLP, TNF-α, IL-6, IL-4, and IFN-γ in the supernatant of stimulated splenic cells. Comparing to DNFB-sensitized control group, pCA-treated group alleviated pathological changes of AD-like lesions. pCA decreased the proteins and mRNA expressions levels of TSLP, IL-6, and IL-4 in the skin lesions. Caspase-1 activation was also downregulated by pCA treatment in the AD-like lesions. The serum levels of histamine, IgE, TSLP, TNF-α, IL-6, and IL-4 were suppressed following treatment with pCA. Conclusion: This study suggests that pCA has the potential to improve AD by suppressing TSLP as well as inflammatory cytokines via blocking of caspase-1/NF-κB signal cascade.

Efonidipine Inhibits JNK and NF-κB Pathway to Attenuate Inflammation and Cell Migration Induced by Lipopolysaccharide in Microglial Cells

  • Nguyen, Ngoc Minh;Duong, Men Thi Hoai;Nguyen, Phuong Linh;Bui, Bich Phuong;Ahn, Hee-Chul;Cho, Jungsook
    • Biomolecules & Therapeutics
    • /
    • v.30 no.5
    • /
    • pp.455-464
    • /
    • 2022
  • Efonidipine, a calcium channel blocker, is widely used for the treatment of hypertension and cardiovascular diseases. In our preliminary study using structure-based virtual screening, efonidipine was identified as a potential inhibitor of c-Jun N-terminal kinase 3 (JNK3). Although its antihypertensive effect is widely known, the role of efonidipine in the central nervous system has remained elusive. The present study investigated the effects of efonidipine on the inflammation and cell migration induced by lipopolysaccharide (LPS) using murine BV2 and human HMC3 microglial cell lines and elucidated signaling molecules mediating its effects. We found that the phosphorylations of JNK and its downstream molecule c-Jun in LPS-treated BV2 cells were declined by efonidipine, confirming the finding from virtual screening. In addition, efonidipine inhibited the LPS-induced production of pro-inflammatory factors, including interleukin-1β (IL-1β) and nitric oxide. Similarly, the IL-1β production in LPS-treated HMC3 cells was also inhibited by efonidipine. Efonidipine markedly impeded cell migration stimulated by LPS in both cells. Furthermore, it inhibited the phosphorylation of inhibitor kappa B, thereby suppressing nuclear translocation of nuclear factor-κB (NF-κB) in LPS-treated BV2 cells. Taken together, efonidipine exerts anti-inflammatory and anti-migratory effects in LPS-treated microglial cells through inhibition of the JNK/NF-κB pathway. These findings imply that efonidipine may be a potential candidate for drug repositioning, with beneficial impacts on brain disorders associated with neuroinflammation.

Effects of Herbal Medicine Complex on Skin Inflammation and Atopic Dermatitis (한방 복합물이 피부 염증 및 아토피 피부염에 미치는 영향)

  • Ji-Hee, Choi;In-Hwan, Joo;Jong-Min, Park;Dong-Hee, Kim
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.36 no.5
    • /
    • pp.187-192
    • /
    • 2022
  • The purpose of this study is to examine the effect of herbal medicine complex (HMC) containing Camellia sinensis L., Duchoesna chrysantha, Houttuynia cordata Thunberg, Poncirus trifoliata Rafinesque on skin inflammation and atopic dermatitis. First, we examined the anti-inflammatory effect of HMC in TNF-α induced human keratinocytes (HaCaT cell). Real-time PCR and western blotting were performed to evaluate the expression of inflammatory cytokines (e.g., iNOS, COX-2, IL-6, IL-8) mRNA and protein. Four-weeks old male NC/Nga mice were treated with 1% 2,4-dinitrochlorobenzene (DNCB) solution and used as an atopic dermatitis mice model. And, HMC (200 mg/kg or 400 mg/kg) was administered directly into the stomach of mice for 4 weeks, and blood or serum analysis, tissue staining were performed after oral gavage. As a result HMC inhibited the mRNA expression of iNOS, COX-2, IL-6, and IL-8, which had been increased by TNF-α in HaCaT cells. In addition, the protein expression was also significantly suppressed in the same way as the mRNA expression results. The in vivo experiment results showed that, HMC administration reduced thickening of the epidermis and infiltration of eosinophil into the skin stratum basale compared to DNCB treatment. In addition, HMC administration significantly reduced the inflammatory cytokines (IL-4, IL-5, IL-6, and IL-13) production and immunocyte (white blood cell, lymphocyte, neutrophil, and eosinophil) count compared to DNCB treatment. Moreover, the serum IgE and histamine level was decreased by HMC administration. These results suggest that HMC can be used as effective herbal medicine extract for skin inflammation and atopic dermatitis. And this study may contribute to the development of the herbal medicine-based drug for the treatment of skin inflammation and atopic dermatitis.