• Title/Summary/Keyword: HLLC 방법

Search Result 6, Processing Time 0.026 seconds

A Numerical Analysis of a Discontinuous Flow with TVD Scheme (TVD기법을 이용한 불연속 흐름의 수치해석)

  • Jeon, Jeong-Sook;Lee, Bong-Hee;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.597-608
    • /
    • 2003
  • A transcritical flow occurs when the width and slope of a channel are varying abruptly. In this study, the transcritical flow in a two-dimensional open channel is analyzed by using the shallow-water equations. A weighted average flux scheme that has flux limiter with a total variation diminishing condition is introduced for a second-order accuracy in time and space, and non- spurious oscillations at discontinuous points. A HLLC method with three wane speeds is employed to calculate the Riemann problem. To overcome difficulties resulting from variation of channel sections in a two-dimensional analysis of transcritical flow, the numerical model is developed based on a generalized grid system.

Numerical Study on Compressible Multiphase Flow Using Diffuse Interface Method (Diffuse Interface Method를 이용한 압축성 다상 유동에 관한 수치적 연구)

  • Yoo, Young-Lin;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.15-22
    • /
    • 2018
  • A compressible multiphase flow was investigated using a DIM consisting of seven equations, including the fifth-order MLP and a modified HLLC Riemann solver to achieve a precise interface structure of liquid and gas. The numerical methods were verified by comparing the flow structures of the high-pressure water and low-pressure air in the shock tube. A 2D air-helium shock-bubble interaction at the incident shock wave condition (Mach number 1.22) was numerically solved and verified using the experimental results.

Numerical Analysis of Embankment Failure with Finite Volume Method (유한체적법을 이용한 제방붕괴 해석)

  • Yu, Jae-Hong;Kim, Hyung-Jun;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1671-1676
    • /
    • 2006
  • 홍수범람은 무제부에서의 하천수위 상승으로 인해 제내로 서서히 침수해가는 것과 월류로 인한 제방의 파괴를 동반하는 급격한 범람의 두 가지 형태가 있다. 기존연구들은 대부분이 월류에 의한 제방붕괴를 고려할 경우, 제방붕괴가 점진적으로 발생함에도 불구하고 이를 수치모형에 적용할 경우 갑작스럽게 지형을 낮추거나 초기지형으로써 제방붕괴를 가정하여 이를 고려해왔다. 본 연구에서는 제방붕괴를 시간의존적인 함수로 가정하고 이를 고려할 수 있는 서브프로그램의 개발을 통해 기존의 방법과 비교하여 그 영향을 검토하였다. 본 연구에 사용된 수치모형은 비선형의 2차원 천수방정식을 비구조적 격자계가 적용된 유한체적법을 이용하였으며, Riemann 해를 계산하기 위하여 approximate HLLC Riemann solver를 이용하였다. 기연구된 제방붕괴 고려방법과 본 연구의 시간의존적인 제방붕괴 고려방법을 통해 월류량을 비교하였을 때, 기존연구들의 홍수범람 해석결과가 과다예측 되었음을 알 수 있었다. 추후의 이루어질 연구들에서는 시간의존적인 제방붕괴를 반드시 고려해야됨과 동시에 이를 자연현상과 좀더 가깝고 효과적으로 고려할 수 있도록 연구가 필요하다.

  • PDF

Efficiency Analysis of 2D Flow Model According to Cell Configurations (셀 구성에 따른 2차원 흐름모형의 효율성 분석)

  • Shin, Eun Taek;Chung, Hee Soo;Song, Chang Geun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.247-247
    • /
    • 2021
  • 국내외적으로 하도 내의 흐름을 해석하기 위해 다양한 2차원 흐름해석 모형이 적용되고 있다. 2차원 흐름해석 모형은 기존의 1차원 흐름 해석 모형에서 해석하기 어려운 확산형 홍수파 해석에 강점을 가지고 있어 도심 하천의 외수 범람 예측 등에도 사용되고 있다. 하지만 복잡한 지형 형상을 어떻게 격자로 구성하는가에 따라 해석의 효율성과 정확성이 크게 좌우된다. 초기의 2차원 흐름해석 모형은 주로 정형격자 기반의 단순한 셀을 제작하여 구동되었다. 하지만 매우 빠른 유속과 복잡한 형상을 반영하기 위해서는 전체 격자를 조밀하게 구성할 필요가 있으므로 계산 효율이 떨어지는 문제점이 있다. 그렇기 때문에 대안으로 삼각망과 혼합망 등 비정형 격자를 사용하여 필요한 구역만 격자를 조밀하게 구성하는 방법을 사용하고 있지만 이 방법 또한 추가적인 계산 과정에 따른 계산 시간의 증가가 필연적이다. 따라서 최근에는 정형격자와 비정형격자에 대하여 wet-dry front matrix 최적화, 절점제거법 등 다양한 기법을 통하여 계산 효율을 향상시키고 있는 실정이다. 따라서 본 연구에서는 HLLC Rimann solver와 2차 정확도 기법인 MUSCL-Hancock Method를 적용한 유한체적기반 천수방정식을 기반으로 다양한 격자 구성에 따른 2차원 흐름해석 모형의 효율성 분석을 수행하고, 이를 통해 최적의 흐름해석 방안을 제시하고자 한다.

  • PDF

A Numerical Analysis of the Shallow Water Equations Using the HLLL Approximate Riemann Solver (HLLL 근사 Riemann 해법을 이용한 천수방정식의 수치해석)

  • Hwang, Seung-Yong;Lee, Sam-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.148-148
    • /
    • 2011
  • Riemann 문제는 천수방정식과 같은 쌍곡선형 방정식과 단일한 도약에 의해 불연속인 어떤 점의 좌 우에서 상수인 자료로 구성되는 초기치 문제로서 그 해법은 Godunov 방법과 같이 정확해에 의하면 정확 Riemann 해법, 근사 기법에 의하면 근사 Riemann 해법으로 불린다. 지금까지 이용되는 근사 Riemann 해법으로는 1981년에 P. L. Roe가 제안한 Roe의 선형화 기법과 1983년에 A. Harten, P. D. Lax, 그리고 B. van Leer가 제안한 HLL 기법의 수정 기법들이다. 최대 및 최소 파속만 고려하는 것으로 알려진 HLL 기법은 1988년에 B. Einfeldt의 제안에 의해 두 파속의 결정에서 Roe의 선형화 기법에 따른 고유치와 비교하는 것으로 수정되었다(HLLE 기법). 또한, 1994년에 E. F. Toro 등은 접촉파를 고려하기 위해 선형화된 지배방정식의 정확해로부터 중앙 파속을 고려하는 기법을 제안하였고, 이를 HLLC 기법으로 불렀다. 2002년에 T. Linde는 중앙 파속을 평가하기 위해 일반화된(수학적) 엔트로피 함수를 도입하였으며, van Leer는 이를 HLLL 기법으로 불렀다. 이 기법에서는 접촉파의 평가를 위해 보존변수에 대한 일반화된 엔트로피 함수로부터 중앙 파속이 유도되며, 이것과 특성 속도의 비교를 통해 최대 및 최소 파속이 결정된다. 따라서 이 기법에서는 모든 파속이 초기치로부터 결정되므로 HLLE 기법과 달리 Roe의 선형화 기법과 완전히 결별되고 HLLC 기법과 달리 정확해에 의존되지 않는 점에서 HLLL 기법은 모태인 HLL 기법의 온전한 계승으로 볼 수 있다. HLLL 기법은 여러 분야에 적용된 바 있으나, 수공학 분야에 적용된 사례는 알려진 바 없다. 이는 천수방정식에 대한 (물리적) 엔트로피 함수가 명확하지 않기 때문인 것으로 보인다. 이 연구에서는 보존변수로부터 정의되는 총 에너지를 일반화된 엔트로피 함수로 간주하여 모형을 구성하고, 정확해가 알려진 1차원 문제에 대해 적용성을 검토하였다. 정확해가 알려진 경우에 대해 모의한 결과, 1차 정도 수치해의 한계에도 불구하고, HLLL 기법의 결과는 대체로 정확해와 잘 일치하였으며 그 외의 HLL-형 기법의 그것에 비해 우수한 것으로 나타났다. 특히, 물이 빠져 바닥이 드러나는 상태에 대한 접촉 파속의 추정에서 Riemann 불변량을 이용하는 HLLC 기법에 비해 물이 빠지는 전선을 더 정확하게 포착하는 HLLL 기법의 결과는 매우 고무적이었다.

  • PDF

Two-phase Finite Volume Analysis Method of Debris Flows in Regional-scale Areas (2상 유한체적모델 기반의 광역적 토석류 유동해석기법)

  • Jeong, Sangseom;Hong, Moonhyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.4
    • /
    • pp.5-20
    • /
    • 2022
  • To analyze the flow and density variations in debris flows, a two-phase finite volume model simplified with momentum equations was constructed in this study. The Hershel-Buckley rheology model was employed in this model to account for the internal and basal friction of debris flows and was utilized to analyze complex topography and entrainments of basal soil beds. In order to numerically solve the debris flow analysis model, a finite volume model with the Harten-Lax-van Leer-Contact method was used to solve the conservation equation for the debris flow interface. Case studies of circular dam failure, non-Newtonian fluid dam failure, and multiple debris flows were analyzed using the proposed model to evaluate shock absorption capacity, numerical isotropy, model accuracy, and mass conservation. The numerical stability and correctness of the debris flow analysis of this analysis model were proven by the analysis results. Additionally, the rate of debris flow with various rheological properties was systematically simulated, and the effect of debris flow rheological properties on behavior was analyzed.