Browse > Article
http://dx.doi.org/10.7843/kgs.2022.38.4.5

Two-phase Finite Volume Analysis Method of Debris Flows in Regional-scale Areas  

Jeong, Sangseom (Dept. of Civil and Environmental Eng., Yonsei Univ.)
Hong, Moonhyun (Dept. of Civil and Environmental Eng., Yonsei Univ.)
Publication Information
Journal of the Korean Geotechnical Society / v.38, no.4, 2022 , pp. 5-20 More about this Journal
Abstract
To analyze the flow and density variations in debris flows, a two-phase finite volume model simplified with momentum equations was constructed in this study. The Hershel-Buckley rheology model was employed in this model to account for the internal and basal friction of debris flows and was utilized to analyze complex topography and entrainments of basal soil beds. In order to numerically solve the debris flow analysis model, a finite volume model with the Harten-Lax-van Leer-Contact method was used to solve the conservation equation for the debris flow interface. Case studies of circular dam failure, non-Newtonian fluid dam failure, and multiple debris flows were analyzed using the proposed model to evaluate shock absorption capacity, numerical isotropy, model accuracy, and mass conservation. The numerical stability and correctness of the debris flow analysis of this analysis model were proven by the analysis results. Additionally, the rate of debris flow with various rheological properties was systematically simulated, and the effect of debris flow rheological properties on behavior was analyzed.
Keywords
Combined analytical method; Debris flow; Entrainment; Hurshel-Buckley Rheology; Landslide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sosio, R. and Crosta, G. B. (2009), Rheology of concentrated granular suspensions and possible implications for debris flow modeling, Water resources research, Vol.45, No.3.
2 Xia, X. and Liang, Q. (2018), A new depth-averaged model for flow-like landslides over complex terrains with curvatures and steep slopes, Engineering Geology, Vol.234, pp.174-191.   DOI
3 Zanuttigh, B. and Lamberti, A. (2004), Analysis of debris wave development with one-dimensional shallow-water equations, Journal of Hydraulic Engineering, Vol.130, No.4, pp.293-304.   DOI
4 Hurlimann, M., Rickenmann, D., Medina, V., and Bateman, A. (2008), Evaluation of approaches to calculate debris-flow parameters for hazard assessment, Engineering Geology, Vol.102, No.3-4, pp.152-163.   DOI
5 Pudasaini, S. P. (2012), A general two-phase debris flow model, Journal of Geophysical Research: Earth Surface, Vol.117, No.F3.
6 Iverson, R. M. (1997), The physics of debris flows, Reviews of geophysics, Vol.35, No.3, pp.245-296.   DOI
7 Iverson, R. M., Reid, M. E., Logan, M. et al. (2011), Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment, Nature Geoscience, Vol.4, No.2, pp.116-121.   DOI
8 Johnson, C. G., Kokelaar, B. P., Iverson, R. M. et al. (2012), Grain-size segregation and levee formation in geophysical mass flows, Journal of Geophysical Research: Earth Surface, Vol.117, No.F1.
9 Kaitna, R., Rickenmann, D., and Schatzmann, M. (2007), Experimental study on rheologic behaviour of debris flow material, Acta Geotechnica, Vol.2, No.2, pp.71-85.   DOI
10 Wang, X., Morgenstern, N. R., and Chan, D. H. (2010), A model for geotechnical analys is of flow s lides and debris flows , Canadian geotechnical journal, Vol.47, No.12, pp.1401-1414.   DOI
11 Nikitin, K. D., Olshanskii, M. A., Terekhov, K. M., and Vassilevski, Y. V. (2011), A numerical method for the simulation of free surface flows of viscoplastic fluid in 3D, Journal of Computational Mathematics, pp.605-622.
12 Laigle, D. and Coussot, P. (1997), Numerical modeling of mudflows, Journal of hydraulic engineering, Vol.123, No.7, pp.617-623.   DOI
13 Li, J., Cao, Z., Hu, K. et al. (2018), A depth-averaged two-phase model for debris flows over erodible beds, Earth Surface Processes and Landforms, Vol.43, No.4, pp.817-839.   DOI
14 Medina, V., Hurlimann, M., and Bateman, A. (2008), Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula, Landslides, Vol.5, No.1, pp.127-142.   DOI
15 Parsons, J. D., Whipple, K. X., and Simoni, A. (2001), Experimental study of the grain flow, fluid-mud transition in Debris flows, The Journal of Geology, Vol.109, No.4, pp.427-447.   DOI
16 Pastor, M., Yague, A., Stickle, M. M. et al. (2018), A two-phase SPH model for debris flow propagation, International Journal for Numerical and Analytical Methods in Geomechanics, Vol.42, No.3, pp.418-448.   DOI
17 Pellegrino, A. M., Di, Santolo, A. S., and Schippa, L. (2016), The sphere drag rheometer: A new instrument for analysing mud and debris flow materials, GEOMATE Journal, Vol.11, No.25, pp.2512-2519.
18 Whipple, K.X. (1997), Open-channel flow of Bingham fluids: Applications in debris-flow research, The Journal of Geology, Vol. 105, No.2, pp.243-262.   DOI
19 Schatzmann, M., Bezzola, G. R., Minor, H. E. et al. (2009), Rheometry for large-particulated fluids: Analysis of the ball measuring system and comparison to debris flow rheometry, Rheologica Acta, Vol.48, No.7, pp.715-733.   DOI
20 Scotto, Di., Santolo, A., Pellegrino, A. M., and Evangelista, A. (2010), Experimental study on the rheological behaviour of debris flow, Natural Hazards and Earth System Sciences, Vol.10, No.12, pp.2507-2514.   DOI
21 Pellegrino, A. M. and Schippa, L. (2018), A laboratory experience on the effect of grains concentration and coarse sediment on the rheology of natural debris-flows, Environmental earth sciences, Vol.77, No.22, pp.1-13.   DOI
22 Xia, X., Liang, Q., Ming, X., and Hou, J. (2017), An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations, Water resources research, Vol.53, No.5, pp.3730-3759.   DOI
23 Jeong, S. W. and Park, S. S. (2016), On the viscous resistance of marine sediments for estimating their strength and flow characteristics, Geosciences Journal, Vol.20, No.2, pp.149-155.   DOI
24 Xia, X., Liang, Q., Pastor, M. et al. (2013), Balancing the source terms in a SPH model for solving the shallow water equations, Advances in water resources, Vol.59, pp.25-38.   DOI
25 Chen, H. and Lee, C. F. (2000), Numerical simulation of debris flows, Canadian Geotechnical Journal, Vol.37, No.1, pp.146-160.   DOI
26 Ancey, C. and Cochard, S. (2009), The dam-break problem for Herschel-Bulkley viscoplastic fluids down steep flumes, Journal of Non-Newtonian Fluid Mechanics, Vol.158, No.1-3, pp.18-35.   DOI
27 Bernabeu, N., Saramito, P., and Smutek, C. (2014), Numerical modeling of non-Newtonian viscoplastic flows: Part II. Viscoplastic fluids and general tridimensional topographies, International Journal of Numerical Analysis and Modeling, Vol.11, No.1, pp.213-228.
28 Crosta, G. B., Imposimato, S., and Roddeman, D. (2009), Numerical modelling of entrainment/deposition in rock and debris-avalanches, Engineering geology, Vol.109, No.1-2, pp.135-145.   DOI
29 Garcia-Delgado, H., Machuca, S., and Medina, E. (2019), Dynamic and geomorphic characterizations of the Mocoa debris flow (March 31, 2017, Putumayo Department, southern Colombia), Landslides, Vol.16, No.3, pp.597-609.   DOI
30 Hong, M. and Jeong, S. (2019), A Combined Method for Rainfall-induced Landslides and Debris flows in Regional-scale Areas, Journal of the Korean Geotechnical Society, Vol.35, No.10, pp. 17-31.
31 Kim, J. H., Kim, Y. M., Jeong, S. S., and Hong, M. H. (2017), Rainfall-induced landslides by deficit field matric suction in unsaturated soil slopes, Environmental Earth Sciences, Vol.76, No.23, pp.1-17.   DOI
32 Liu, W., He, S., Li, X., and Xu, Q. (2016), Two-dimensional landslide dynamic simulation based on a velocity-weakening friction law, Landslides, Vol.13, No.5, pp.957-965.   DOI
33 Ginting, B. M. and Mundani, R. P. (2019), Comparis on of s hallow water solvers: Applications for dam-break and tsunami cases with reordering strategy for efficient vectorization on modern hardware, Water, Vol.11, No.4, pp.639.   DOI
34 Hong, M., Jeong, S., and Kim, J. (2019), A combined method for modeling the triggering and propagation of debris flows, Landslides, Vol.17, No.4, pp.805-824.   DOI
35 Hou, J., Wang, T., Li, P. et al. (2018), An implicit friction source term treatment for overland flow simulation using shallow water flow model, Journal of Hydrology, Vol.564, pp.357-366.   DOI
36 Pouliquen, O. and Forterre, Y. (2002), Friction law for dense granular flows: Application to the motion of a mass down a rough inclined plane, Journal of fluid mechanics, Vol.453, pp.133-151.   DOI
37 Pastor, M., Soga, K., McDougall, S., and Kwan, J. S. H. (2018), Review of benchmarking exercise on landslide runout analysis, In Proceedings of the Second JTC1 Workshop on Triggering and Propagation of Rapid Flow-like Landslides, pp.281-323.