• Title/Summary/Keyword: HIP Process

Search Result 144, Processing Time 0.023 seconds

Microstructure-Properties Relationships of Ti-6Al-4V Parts Fabricated by Selective Laser Melting

  • Mezzetta, Justin;Choi, Joon-Phil;Milligan, Jason;Danovitch, Jason;Chekir, Nejib;Bois-Brochu, Alexandre;Zhao, Yaoyao Fiona;Brochu, Mathieu
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.605-612
    • /
    • 2018
  • This work investigates the relationships between the static mechanical properties of Ti-6Al-4V manufactured through selective laser melting (SLM) and post-process heat treatments, namely stress relieve, annealing and hot isostatic pressing (HIP). In particular, Ti-6Al-4V parts were fabricated in three different build orientations of X, Z, and $45^{\circ}$ to investigate the multi-directional mechanical properties. The results showed that fully densified Ti-6Al-4V parts with densities of up to 99.5% were obtained with optimized SLM parameters. The microstructure of stress relieved and mill annealed samples was dominated by fine ${\alpha}^{\prime}$ martensitic needles. After HIP treatment, the martensite structure was fully transformed into ${\alpha}$ and ${\beta}$ phases (${\alpha}+{\beta}$ lamellar). Within the realm of tensile properties, the yield and ultimate strength values were found statistically similar with respect to the built orientation for a given heat treatment. However, the ductility was found orientation dependent for the HIP samples, where a lower value was observed for samples built in the X direction.

Coordinated Intra-Limb Relationships and Control in Gait Development Via the Angle-Angle Diagram (보행 시 연령에 따른 하지 관절 내 운동학적 협응과 제어)

  • Lee, Kyung-Ok
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.17-35
    • /
    • 2004
  • The purpose of this study is to explain developmental process of gait via angle-angle diagram to understand how coordinated relationships and control change with age. Twenty four female children, from one to five years of age were the test subjects for this study, and their results were compared to a control group consisting of twenty one adult females. The Vicon 370 CCD camera, VCR, video timer, monitor, and audio visual mixer was utilized to graph the gait cycle for all test subjects. Both coordinated Intra-limb relationships, and range of motion and timing according to quadrant were explained through the angle angle diagram. Movement in the sagittal plane showed both coordinated relationships and control earlier than movement in the coronal or transverse plane. In the sagittal plane, hip and Knee coordinated relationships developed first (from one year of age.) Coordinated relationships in the Knee and ankle and hip and ankle developed next, respectively. Both hip and ankle and knee and ankle development were inhibited by the inability of children to completely perform plantar flexion during the swing and initial double limb support phases. Children appeared to compensate for this by extending at their hip joint more than adults during the third phase, final double limb support. In many cases the angle angle diagram for children had a similar shape as adult's angle angle diagram. This shows that children can coordinate their movements at an early age. However, the magnitudes and timing of children's angle angle diagrams still varied greatly from adults, even at five years of age. This indicates that even at this age, children still do not possess full control of their movements.

Fabrication of SiCN microstructures for super-high temperature MEMS using PDMS mold and its characteristics (PDMS 몰드를 이용한 초고온 MEMS용 SiCN 미세구조물 제작과 그 특성)

  • Chung, Gwiy-Sang;Woo, Hyung-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.53-57
    • /
    • 2006
  • This paper describes a novel processing technique for fabrication of polymer-derived SiCN (silicone carbonitride) microstructures for super-temperature MEMS applications. PDMS (polydimethylsiloxane) mold is fabricated on SU-8 photoresist using standard UV photolithographic process. Liquid precursor is injected into the PDMS mold. Finally, solid polymer structure is cross-linked using HIP (hot isostatic pressure) at $400^{\circ}C$, 205 bar. Optimum pyrolysis and annealing conditions are determined to form a ceramic microstructure capable of withstanding over $1400^{\circ}C$. The fabricated SiCN ceramic microstructure has excellent characteristics, such as shear strength (15.2 N), insulation resistance ($2.163{\times}10^{14}{\Omega}$) and BDV (min. 1.2 kV) under optimum process condition. These fabricated SiCN ceramic microstructures have greater electric and physical characteristics than bulk Si wafer. The fabricated SiCN microstructures would be applied for supertemperature MEMS applications such as heat exchanger and combustion chamber.

A study of parametric design methodology for 3D modeling parameters of biomorphic clothing sculpture (파라메트릭 디자인 방법론을 적용한 바이오모픽 의상조각 모델링 프로세스와 구성요소 분석)

  • Yoo, Young-Sun;Cho, Min-Jin
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.21 no.2
    • /
    • pp.109-122
    • /
    • 2019
  • The purpose of this study is to examine the clothing component information and attributes as the control parameters for the 3D modeling process of the biomorphic clothing sculpture using a parametric methodology. The 3D modeling parameters of biomorphic clothing sculpture were identified as exaggerated silhouette, surface texture, and digital color. The types of exaggerated silhouettes were shoulder and hip exaggeration, shoulder exaggeration, hip exaggeration, vertical exaggeration, and horizontal exaggeration. The types of surface texture were embossed, lacy, furry, and complex textures. The types of digital color were chrome, blur, blend, and acid colors. The characteristics of morphological representation due to the attributes of these control variables were identified as morphological variation, organic morphology, organizational morphology, and realistic morphology. As a result, it was found that the parameter attributes were applied to the biomorphic clothing sculpture parametric design process and developed into various shapes.

Influence of Hot Isostatic Press on Quasi-static and Dynamic Mechanical Properties of SLM-printed Ti-6Al-4V Alloy (SLM 방식으로 적층 제조된 Ti-6Al-4V 합금의 HIP 처리에 따른 준정적 및 동적 기계적 특성 변화)

  • Jang, Ji-Hoon;Choi, Young-Sin;Kim, Hyeoung-Kyun;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.3
    • /
    • pp.99-106
    • /
    • 2020
  • Selective laser melting (SLM) is an additive manufacturing process by melting metallic powders and stacking into layers, and can product complex shapes or near-net-shape (NNS) that are difficult to product by conventional processes. Also, SLM process is able to raise the efficiency of production by creating a streamlined manufacturing process. For manufacturing in SLM process using Ti-6Al-4V powder, analysis of microstructural evolution and evaluation of mechanical properties are essential because of rapid melting and solidification process of powders according to high laser power and rapid scan speed. In addition, it requires a post-processing because the soundness and mechanical properties are degraded by defects such as pore, un-melted powder, lack-of-fusion, etc. In this study, hot isostatic press (HIP) was conducted as a post-processing on SLM-printed Ti-6Al-4V alloy. Microstructure of post-processed Ti-6Al-4V alloy was compared to as-built Ti-6Al-4V, and the evolution of quasi-static (Vickers hardness, room temperature tensile characteristic) and dynamic (high-cycle fatigue characteristic) mechanical properties were analyzed.

Analysis on the Characteristics of Micro Cutting Process for DMLS Mold Material (DMLS 금형강의 미세 절삭가공 특성 분석)

  • Yoon, Gil-Sang;Kim, Gun-Hee;Lee, Jeong-Won;Kim, Jong-Deok
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.518-520
    • /
    • 2011
  • 금속분말 쾌속조형법의 한 종류인 DMLS 공정은 사출성형품의 균일한 냉각이 가능한 3차원 냉각시스템을 포함한 코어, 캐비티 제작이 가능하다. 그러나, 코어 및 캐비티 내 미세형상의 경우 DMLS로 제작하기에는 난해하므로 별도 미세 절삭가공을 통해 제작할 필요가 있다. 따라서, 본 연구에서는 DMLS금형강 소재의 미세 절삭가공 특성을 분석하고자 하였으며, 이를 위하여 HIP 공정 적용 전 후 DMLS금형강 소재를 대상으로 미세 절삭가공 실험을 수행하고 버 발생 및 공구마모 경향을 분석하였다. 실험 결과 HIP 적용 전 시편이 강도 및 조직측면에서 미세 절삭가공에 상대적으로 유리함을 확인할 수 있었다.

  • PDF

Densification and Thermo-Mechanical Properties of Al2O3-ZrO2(Y2O3) Composites

  • Kim, Hee-Seung;Seo, Mi-Young;Kim, Ik-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.515-518
    • /
    • 2006
  • The microstructure of $ZrO_2$ toughened $Al_2O_3$ ceramics was carefully controlled so as to obtain dense and fine-grained ceramics, thereby improving the properties and reliability of the ceramics for capillary applications in semiconductor bonding technology. $Al_2O_3-ZrO_2(Y_2O_3)$ composite was produced via Ceramic Injection Molding (CIM) technology, followed by Sinter-HIP process. Room temperature strength, hardness, Young's modulus, thermal expansion coefficient and toughness were determined, as well as surface strengthening induced by the fine grained homogenous microstructure and the thermal treatment. The changes in alumina/zirconia grain size, sintering condition and HIP treatment were found to be correlated.

Numerical simulation of the total hip prosthesis under static and dynamic loading (for three activities)

  • Mohammed El Sallah Zagane;Abdelmadjid Moulgada;Murat Yaylaci;Sahli Abderahmen;Mehmet Emin Ozdemir;Ecren Uzun Yaylaci
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.635-645
    • /
    • 2023
  • This study aims to simulate the mechanical behavior of the total prosthesis model of Charnley (CMK3) by the 3D finite element method and to determine the state of the stresses in the femoral components (prosthesis, cement, and bone). The components are subjected to a dynamic load due to three activities (normal walking, climbing stairs, and standing up a chair). Static loading is by selecting the maximum load for the same activities mentioned. The results show that the maximum stresses in the proximal part of the cement are very important. Moreover, new results obtained for different parameters were discussed in detail. It is understood that current research provides important lessons for the surgeon to contribute to the clinical diagnosis of durable implantations and a better understanding of the process of bone remodeling and bone prosthesis.

Effect of post heat treatment on fatigue properties of EBM 3D-printed Ti-6Al-4V alloy (분말 3D 프린팅된 Ti-6Al-4V 합금의 피로특성에 미치는 후열처리의 영향)

  • Choi, Young-Sin;Jang, Ji-Hoon;Kim, Gun-Hee;Lee, Chang-Woo;Kim, Hwi-Jun;Lee, Dong-Geun
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.340-345
    • /
    • 2018
  • Additive manufacturing by electron beam melting is an affordable process for fabricating near net shaped parts of titanium and its alloys. 3D additive-manufactured parts have various kinds of voids, lack of fusion, etc., and they may affect crack initiation and propagation. Post process is necessary to eliminate or minimize these defects. Hot isostatic pressing (HIP) is the main method, which is expensive. The objective of this paper is to achieve an optimum and simple post heat treatment process without the HIP process. Various post heat treatments are conducted for the 3D-printed Ti-6Al-4V specimen below and above the beta transus temperature ($996^{\circ}C$). The as-fabricated EBM Ti-6Al-4V alloy has an ${\alpha}^{\prime}$-martensite structure and transforms into the ${\alpha}+{\beta}$ duplex phase during the post heat treatment. The fatigue strength of the as-fabricated specimen is 400 MPa. The post heat treatment at $1000^{\circ}C/30min/AC$ increases the fatigue strength to 420 MPa. By post heat treatment, the interior pore size and the pore volume fraction are reduced and this can increase the fatigue limit.

Developing Activity Based Clinical Pathway for Patients with Total Hip Replacement (활동기준관리를 적용한 인공고관절 전치환술 Clinical Pathway 개발)

  • Hong, Yoon-Mi
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.8 no.4
    • /
    • pp.669-689
    • /
    • 2002
  • Purpose : The purpose of the present study is to develop a clinical pathway applied with activity-based management methodology for efficient clinical management to cope with rapid changing medical environments. Method : After making a preliminary pathway based on which a conceptual frame of reference was established to develop a clinical pathway, the final one was confirmed by verifying experts validity and clinical validity. The ultimate activity-based clinical pathway was restructured after clarifying, schematizing and analyzing the whole activities of clinical pathway in accordance with the conducting process of activity-based management. Result : A clinical pathway for total hip replacement was developed, in which the vertical axis consisted of assessment, examination, consultation, medication, treatment, diet, activity, and education, and the horizontal axis was composed of six days of hospitalization. Then, on the basis of the development, the clinical pathway including the improved contents and information was restructured after making the reform measure by analyzing each of activities in the pathway. And the list of contents related to the clinical management activity was made, which was described its main contents and the pre-activities that ought to be completed before conducting each of activities in the pathway. Conclusion : The clinical pathway applied with activity-based management may be used as a standard guidance for providing continuous and consistent patient care. It will provide the information for nursing activities to nurses and the management information about hospital and nursing activities to the hospital administrators. It will also be used as a tool for communication between medical staff. Besides, it will contribute to creating profits for the hospital by shortening the length of stay in patients.

  • PDF