• Title/Summary/Keyword: HIP JOINT MOTION

Search Result 348, Processing Time 0.023 seconds

Influence of Transition from the Half-Kneel to Standing Posture in Hemiplegic Patients (편마비 환자의 반 무릎서기 자세가 일어서기 동작 수행에 미치는 영향)

  • Yang, Dae-Jung;Jang, Il-Yong;Park, Seung-Kyu;Lee, Jun-Hee;Kang, Jung-Il;Chun, Dong-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.5
    • /
    • pp.49-56
    • /
    • 2011
  • Purpose: The purpose of this study was to investigate the kinematic characteristics and muscle activities during the following two conditions: transition from half-kneel to standing on the affected leg and non-affected leg. Methods: Twenty-one hemiplegic patients participated in the study. A motion analysis system was used to record the range of motion and angle velocity of the hip, knee and ankle from the half-kneel to the standing position. Electromyography was used to record the activity of 4 muscles. Results: The statistical analysis showed that the minimum ROM of the hip joint was less on the affected leg during transition from half-kneel to standing. However, the minimum ROM of the knee and ankle joints was less on the non-affected leg during transition from half-kneel to standing. The angle velocity of the knee and ankle joints was less during transition from half kneeling to standing on the non-affected leg. Muscle activity of the rectus femoris and tibialis anterior was less while moving from half-kneel to the standing position on the affected leg. Conclusion: These results show that greater active ROM of the knee and ankle was required on the affected leg for transition from half-kneel to the standing position than for normal gait. Muscle activity of the rectus femoris and tibialis anterior is normally required for movement from the half-kneel to the standing position during normal gait. Further studies are needed to investigate the antigravity movement in healthy subjects and hemiplegic patients in order to completely understand the normal and abnormal movement from the half-kneel to the standing position.

Effect of Knee Joint Injury on Biomechanical Factors during the Uchi-mata (허벅다리걸기 시 무릎 관절 부상이 운동역학적 요인들에 미치는 영향)

  • Hyun Yoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.642-649
    • /
    • 2023
  • The purpose of this study was to analyze the effects of knee joint injury experiences of judo players on kinematic factors and center of pressure factors during uchimata. Among right-handed male college judo players specializing in uchimata, 13 people who had a knee joint injury experience(age, 20.69.1±0.75 years; height, 172.85±4.81 cm; body mass, 74.92±5.51 kg; and career, 8.92±0.95 years) and 13 people who did not have a knee joint injury experience(age, 21.08.1±0.76 years; height, 172.54±6.32 cm; body mass, 76.62±9.09 kg; and career, 9.46±0.94 years) within the last 2 years were divided into two groups and participated as subjects. The two groups were evaluated for differences in ankle, knee, and hip joint angle variables, COP range, and velocity components during uchimata. As a result of the study, the EIG group showed smaller values in the knee joint flexion angle at E3 and the hip joint extension angle at E4 during uchimata than the NIG group. In addition, the EIG group showed lower values in the range of motion of the COP and forward movement velocity of the COP in the one-leg support phase than the NIG group.

The Process of the Interjoint and Intersegmental Coordination of Side Kick Motion in Taekwondo (태권도 옆차기 동작의 인체관절과 분절사이의 협응 과정)

  • Yoon, Chang-Jin;Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.179-189
    • /
    • 2008
  • The purpose of this study was to investigate interjoint and intersegmental coordination of lower segments in skill process. For the investigation, we examined the difference of resultant linear velocity of segments and angle vs angle graph. Novice subjects were 9 male middle school students who have never been experienced a taekwondo. We analyzed kinematic variables of Side Kick motion through videographical analysis. The conclusions were as follows. 1. Examining the graph of novice subjects' maximal resultant linear velocity of the thigh, shank, and foot segment, as it gets closer to the end of the training, the maximal resultant linear velocity in each segment increases which can be assumed to be a result of the effective momentum transfer between adjacent segments. 2 This research showed a sequential transfer from trunk, to thigh, and then to shank as it gets closer to the end of learning at intersegment angular velocity, and it also showed pattern of throwlike motion and pushlike motion. 3. In three dimension of flexion-extension, adduction-abduction and internal-external rotation of the thigh and shank segment, the angle-angle diagram of knee joint and of hip joint showed that dynamic change was indicated at the beginning of learning but stable coordination pattern was indicated like skilled subject as novice subjects became skilled.

Overhand Grip or Underhand Grip, which one is more Effective on Conventional Deadlift Movement? (오버핸드 그립과 언더핸드 그립, 무엇이 컨벤셔널 데드리프트에 효과적일까?)

  • Kim, Jaeho;Yoon, Sukhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.2
    • /
    • pp.133-139
    • /
    • 2021
  • Objective: This study aims to verify the conventional deadlift motions using by two different grips, thereby elucidating the grounds for effective training methods that can minimize the risk of injury. Method: Total of 18 healthy young adults were recruited for this study (age: 25.11±2.19 yrs., height: 175.67±5.22 cm, body mass: 78.5±8.09 kg, 1-RM: 125.75±19.48 kg). All participants were asked to perform conventional deadlift with two types of grips which are overhand grip (OG) and underhand grip (UG). In each grip, participant perform the deadlift with 50% and 80% of the pre-measured 1-RM. A 3-dimensional motion analysis with 8 infrared cameras and 3 channels of EMG was performed in this study. A two-way ANOVA (group × load) with repeated measure was used for statistical verification. The significant level was set at α=.05. Results: There were significant differences in grip type and weight on the right shoulder joint, and only significant difference in grip on the left shoulder joint (p<.05). The hip joint ROM was significantly increased as the weight increased in both types of grips on phase 1, while the ROM of hip joint was significantly decreased as the weight increased only in the case of OG on phase 2 (p<.05). In case of the OG, as the weight, increased significantly increased L1 ROM and L3 ROM were revealed on phase 1 and phase 2, respectively (p<.05). Moreover, as the weight increased, UG revealed significantly decreased L5 ROM on phase 1, while both grips showed significantly increased ROM on phase 2 (p<.05). In addition, the erector spinae and the biceps femoris, which are synergist for the motion, showed a significant difference in both types of grip according to the weight (p<.05). The muscle activity ratio of gluteus maximus/biceps femoris showed a significant difference only in the UG according to the weight (p<.05). Conclusion: In conclusion, beginners might be suggested to use the UG for maintaining the neutral state of the lumbar spine and focus on the gluteus maximus muscle, which is the main activation muscle. For the experts, it may recommend alternative use of the OG and UG according to the training purpose to minimize the compensation effect.

Longitudinal Kinematical Analysis of Kip to Swallow Motion in Rings (링 운동 차오르며 Swallow 동작 처치 전.후의 기술분석)

  • Back, Jin-Ho;Park, Jong-Hoon;Lee, Yong-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.173-181
    • /
    • 2006
  • The purpose of this study is grasp the problem of the gymnast, Kim, Dong-Hwa's Kip to Swallow Motion in Rings, and make up for the weak points to help him to perform a better performance. Therefore, two tryouts for $28^{th}$ Athens Olympic Games were filmed using video camera then finalized with Kinematical Analysis using 3D motion analysis program followings are the form of conclusions. 1. In the very first tryout, when he was doing a Swallow Support Scale, his CM position was high and arm slope was deduction because when he was doing Kip, the ascent velocity was low and he tried excessively to pull him on rings due to relying upon angular movement of shoulder joint. 2. When he was doing drop, he let his hip angle bend only little bit and let fall so making shoulder angle wider and maintain the level horizontally occurs strong drop motion when vertical descent is happening. 3. As a result, lowering the direction of a kick makes CM's movement path lower, increase vertical ascent velocity, and it helps to do the Swallow Support motion in short period of time. 4. After a strong drop motion, which is deep and fast, would make rope of ring shake so there is a defect that the body moves to forward area. However, it does not effect in Swallow Support Scale motion. 5. In the second tryout, trunk rotation angle and arm slope was fixed decrease while doing rotary motion. When rotary motion was happening, before the body was going under the rings, maintained his arm slope horizontally so his Swallow Support Scale motion was nearly perfect.

The Analysis of GRF and joint angles of young and older adult by Vibration Stimulation on the Ankle-Joint in stair-descent activity (족관절에 인가한 진동자극이 계단 하강 동작에서 청년과 노인의 관절각도와 지면반발력에 미치는 영향)

  • So, H.J.;Kwak, K.Y.;Kim, S.H.;Yang, Y.S.;Kim, N.G.;Kim, D.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.61-73
    • /
    • 2011
  • The purpose of this study was to investigate changes in the center of pressure (COP), ground reaction force (GRF) and joint angles of elderly people and young people while stair-descent. The participants in this experiment were 5 elderly people and 5 young people, each of which was asked to descend stairs of three different heights (8 cm, 16 cm, and 32 cm). As they climbed down the stairs, they received vibration stimulation on the lower limb. The change of COP, GRF and joint angles were analyzed during the standing phase. COP decreased as the Achilles tendon and tibialis anterior tendon were vibrated. Vertical GRF increased as the Achilles tendon was vibrated, and the joint angle differed according to vibration stimulation conditions. These results mean that ankle joint, knee joint and hip joint were influenced by the vibrations on the lower limb as the participants descended the stairs. It was concluded that the vibration stimulation on the lower limb allowed the participants to efficiently climb down the stairs.

Heterotopic Ossification Mimics Neurogenic Tumor: A Case Report (신경원성 종양으로 오인된 이소성 골 형성: 증례 보고)

  • Yang, Hyun-Kee;Jung, Sung-Taek;Jo, Ah-Reum;Moon, Jae-Young
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.19 no.2
    • /
    • pp.92-96
    • /
    • 2013
  • Heterotopic ossification is an abnormal bone formation after surgery or without any reason. Large joint, such as hip and knee joint, is a known most common site. Operation itself and postoperative early range of motion exercise are risk factors. We present a case of heterotopic ossification mimics neurogenic tumor after high tibial osteotomy.

Gait analysis of Healthy Adults with External Loads on Trunk (체간에 무게 부하를 적용한 정상 성인의 보행 분석)

  • Chang, Jong-Sung;Choi, Jin-Ho;Lee, Mi-Young;Kim, Meuung-Kwon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.1
    • /
    • pp.69-75
    • /
    • 2012
  • Purpose : The study was designed to investigate analysis of kinematics of lower extremity in healthy adults during walking with external loads on trunk. Methods : Fifteen healthy adults were recruited and The subjects provided written and informed consent prior to participation. They walked on a ten-meter walkway at a self-selected pace with loads of 0, 5, 10, and 15kg. They completed three trials in each condition and kinematic changes were measured. A three-dimensional motion analysis system was used to analyze lower extremity kinematic data. The data collected by each way of walking task and analyzed by One-way ANOVA. Results : There were significant differences in hip and knee joint on saggittal plane at initial contact and preswing, and significant differences in ankle joint on transverse plane at preswing. Conclusion : These findings revealed that increased external loads were changed joint angles and influenced postural strategies because of kinematic mechanism and future studies is recommended to find out prevention from damage of activities of daily living.

The test-retest reliability of gait kinematic data measured using a portable gait analysis system in healthy adults

  • An, Jung-Ae;Byun, Kyung-Seok;Lee, Byounghee
    • Journal of Korean Physical Therapy Science
    • /
    • v.27 no.3
    • /
    • pp.25-34
    • /
    • 2020
  • Background: Gait analysis is an important measurement for health professionals to assess gait patterns related to functional limitations due to neurological or orthopedic conditions. The purpose of this study was to investigate the reliability of the newly developed portable gait analysis system (PGAS). Design: Cross-sectional design. Test-retest study. Methods: The PGAS study was based on a wearable sensor, and measurement of gait kinematic parameters, such as gait velocity, cadence, step length and stride length, and joint angle (hip, knee, and ankle) in stance and swing phases. The results were compared with a motion capture system (MCS). Twenty healthy individuals were applied to the MCS and PGAS simultaneously during gait performance. Results: The test-retest reliability of the PGAS showed good repeatability in gait parameters with mean intra-class correlation coefficients (ICCs) ranging from 0.840 to 0.992, and joint angles in stance and swing phase from 0.907 to 0.988. The acceptable test-retest ICC was observed for the gait parameters (0.809 to 0.961), and joint angles (0.800 to 0.977). Conclusion: The results of this study indicated that the developed PGAS showed good grades of repeatability for gait kinematic data along with acceptable ICCs compared with the results from the MCS. The gait kinematic parameters in healthy subjects can be used as standard values for adopting this PGAS.

Coordinated Intra-Limb Relationships and Control in Gait Development Via the Angle-Angle Diagram (보행 시 연령에 따른 하지 관절 내 운동학적 협응과 제어)

  • Lee, Kyung-Ok
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.17-35
    • /
    • 2004
  • The purpose of this study is to explain developmental process of gait via angle-angle diagram to understand how coordinated relationships and control change with age. Twenty four female children, from one to five years of age were the test subjects for this study, and their results were compared to a control group consisting of twenty one adult females. The Vicon 370 CCD camera, VCR, video timer, monitor, and audio visual mixer was utilized to graph the gait cycle for all test subjects. Both coordinated Intra-limb relationships, and range of motion and timing according to quadrant were explained through the angle angle diagram. Movement in the sagittal plane showed both coordinated relationships and control earlier than movement in the coronal or transverse plane. In the sagittal plane, hip and Knee coordinated relationships developed first (from one year of age.) Coordinated relationships in the Knee and ankle and hip and ankle developed next, respectively. Both hip and ankle and knee and ankle development were inhibited by the inability of children to completely perform plantar flexion during the swing and initial double limb support phases. Children appeared to compensate for this by extending at their hip joint more than adults during the third phase, final double limb support. In many cases the angle angle diagram for children had a similar shape as adult's angle angle diagram. This shows that children can coordinate their movements at an early age. However, the magnitudes and timing of children's angle angle diagrams still varied greatly from adults, even at five years of age. This indicates that even at this age, children still do not possess full control of their movements.