• Title/Summary/Keyword: HILS 시스템

Search Result 168, Processing Time 0.032 seconds

A Hardware-In-the Loop Simulation technique for an IR guided weapon (적외선 유도무기 모의비행시험 기법)

  • 김영주;김민희;조규필
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.466-470
    • /
    • 1993
  • A HILS(Hardware-In-the-Loop Simulation) technique for an IR guided weapon is proposed. The IR HILS facility functions as a testing unit for a missile guidance and control system to evaluate target acquisition, tracking, and countermeasure performance. The configuration of IR HILS facility, modeling technique of an IR environment including target, background and countermeasure, and test and evaluation procedure are included.

  • PDF

A HILS system and its application on collision detection of an industrial robots

  • Song, Ji-Heuk;Lee, Sang-Hun;Hur, Jong-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.109.2-109
    • /
    • 2002
  • $\textbullet$ Development of a HILS System as a High-Speed Prototyper $\textbullet$ Introduction of Major Components $\textbullet$ Design Procedure of Control Algorithm Using the HILS System $\textbullet$ A Design Example: Collision Detection

  • PDF

Development of HILS System for VDC (VDC를 위한 HILS 시스템 개발에 관한 연구)

  • 박기홍;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.184-191
    • /
    • 2003
  • HILS(Hardware-ln-the-Loop Simulation) is a scheme that incorporates hardware components of primary concern in the numerical simulation environment. Due to its advantages over actual vehicle test and pure simulation, HILS is being widely accepted in automotive industries as test benches for vehicle control units. Developed in this study is a HILS system for VDC(Vehicle Dynamics Control) with a valve control system that modulates the brake pressures at low wheels. Two VDC control logics were developed and tested in the HILS system. Test results under various driving conditions are presented in this paper.

HILS(Hardware-In-the-Loop Simulation) Development of a Steering HILS System (전동식 동력 조향 장치 시험을 위한 HILS(Hardware-In-the-Loop Simulation) 시스템 개발)

  • 류제하;노기한;김종협;김희수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.105-111
    • /
    • 1999
  • The paper presents development of a Hardware-In-the-Loop simulation (HILS) system for the purpose of testing performance, stability, and reliability of an electronic power steering system(EPS). In order to realistically test an EPS by the proposed HILS apparatus, a simulated uniaxial dynamic rack force is applied physically to the EPS hardware by a pnumatic actuator. An EPS hardware is composed of steering wheel &column, a rack & pinion mechanism, andas motor-driven power steering system. A command signal for a pneumatic rack-force actuator is generated from the vehicle handling lumped parameter dynamic model 9software) that is simulated in real time by using a very fast digital signal processor. The inputs to the real-time vehicle dynamic simulation model are a constant vehicle forward speed and from wheel steering angles driven through a steering system by a driver. The output from a real-time simulation model is an electric signal that is proportional to the uniaxial rack force. The vehicle handling lumped parameter dynamic model is validated by a fully nonlinear constrained multibody vehicle dynamic model. The HILS system simulation results sow that the proposed HILS system may be used to realistically test the performance stability , and reliability of an electronic power steering system is a repeated way.

  • PDF

Development and Validation of Robot Steered EPS HILS System (로봇 조향 기반 EPS HILS 시스템의 개발 및 검증)

  • Hong, Taewook;Kwon, Jaejoon;Park, Kihong;Ki, Siwoo;Choi, Sangsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.85-95
    • /
    • 2013
  • As the conventional hydraulic power steering system in the passenger vehicles is being rapidly replaced by EPS (Electric Power Steering) system, performance evaluation of the EPS system has become an important issue in the automotive industries. But the evaluation process takes significant expertise since steering conditions in the test protocols must be implemented with high accuracy. EPS HILS (Hardware-In the-Loop Simulation) system is developed together with robot steering system in this study. Main components of EPS HILS system include: C-EPS hardware, CarSim vehicle model, and road reaction force generation system powered by servo motor. The robot steering system, operated by another servo motor, was combined with EPS HILS system to substitute for steering efforts of human driver. The road reaction force generation system and the robot steering system were carefully validated by using the data obtained from vehicle tests. An on-center handling test was conducted by using EPS HILS system combined with the robot steering system. In the result of this study, robot-steered EPS HILS system developed with its high reliability and no need of skilled driver's, can be widely adopted to evaluate any performance of EPS system.

Test of MMC HVDC Control System using Hardware-in-the-Loop Simulation (HILS를 이용한 MMC HVDC 제어 시스템 시험)

  • Lee, Dong-Gyu;Lee, Jun-Chol;Choi, Jong-Yun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.339-340
    • /
    • 2015
  • 본 논문에서는 HVDC 제어 시스템의 기능 검증을 위해 구축한 RTDS 기반의 HILS(Hardware-In-the Loop Simulation)시스템 및 시험 결과를 소개하였다. MMC 기반 VSC HVDC는 다수의 직렬 연결된 SM(Sub-Module)을 개별 제어해야 하므로 기존의 LCC HVDC 및 2/3-Level 컨버터 기반의 VSC HVDC와 같은 설비들보다 훨씬 더 복잡한 VBE 구조를 가지고 있다. 또한 짧은 시간 내에 정밀한 제어가 가능해야 하므로 높은 제어 정밀도가 요구된다. (주)효성에서는 제어 시스템의 성능 검증을 위해 RTDS 기반의 HILS(Hardware-In-the Loop Simulation)시스템을 구축하였으며, 이를 이용하여 HVDC 제어 시스템의 성능 시험을 수행하였다. 본 논문에서는 구축된 RTDS 기반의 HILS 시스템 및 시험 결과를 소개하였다.

  • PDF

A Study on Flight Trajectory Generations and Guidance/Control Laws : Validation through HILS (무인항공기의 비행경로 생성 및 유도제어 알고리즘 연구 : HILS를 통한 검증)

  • Baek, Soo-Ho;Hong, Sung-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1238-1243
    • /
    • 2008
  • This paper presents an HILS(Hardware in the Loop Simulations) based experimental study for the UAV's flight trajectory planning/generation algorithms and guidance/control laws. For the various mission that is loaded on each waypoint, proper trajectory planning and generation algorithms are applied to achieve best performances. Specially, the 'smoothing path' generation and the 'tangent orbit path' guidance laws are presented for the smooth path transitions and in-circle loitering mission, respectively. For the control laws that can minimize the effects of side wind, side slip angle($\beta$) feedback to the rudder scheme is implemented. Finally, being implemented on real hardwares, all the proposed algorithms are validated with integrations of hardware and software altogether via HILS.

A Study on HILS for Performance Analysis of Airborne EOTS for Aircraft (항공기용 EOTS 성능분석을 위한 HILS시스템 구축에 관한 연구)

  • Chun, Seungwoo;Baek, Woonhyuk;La, Jongpil
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.55-64
    • /
    • 2013
  • In this paper, the HILS (Hardware In-the-Loop Simulation) system to analyze and to verify the performance of the targeting pod is addressed. The main functions of the targeting pod is acquiring and tracking targets to guide a LGB (Laser Guided Bomb) to the targets. For the analysis of targeting pod, the real time simulate images generation of IR and daylight cameras, sever control technology, and the analysis of laser transfer characteristics are necessary. For the real time image generation and the laser transfer characteristics analysis, off-the-shelf SDK(Software Development Kit) OKTAL-SE is used. For the servo controller, well-proven mechanism in the previous program is applied to increase servo control accuracy. To analyze the performance of a targeting pod in a realistic environment, 1553B, ARINK818 interface and etc. which are actually implemented in real combat aircrafts are applied in the system. By using the developed HILS system, the performance of currently operating targeting pods in real combat aircrafts can be analyzed and predicted. Additionally, the relationship between overall system performance and each module performance can be analyzed, the currently developed HILS system is expected to be a very useful tool to generate system development requirements of targeting pods and to reduce any possible future development risks.

Development of Navigation HILS System for Integrated Navigation Performance Analysis of Large Diameter Unmanned Underwater Vehicle (LDUUV) (대형급 탐색용 무인잠수정 복합항법 성능 분석을 위한 항법 HILS 시스템 개발)

  • Yoo, Tae-Suk;Kim, Moon Hwan;Hwang, Jong Hyun;Yoon, Seon Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.367-373
    • /
    • 2016
  • This paper describes the development of a navigation HILS (hardware in the loop simulation) system for an integrated navigation performance analysis of a large diameter unmanned underwater vehicle (LDUUV). The HILS system was used for the performance analysis of the LDUUV. When a conventional HILS system is used, it is not possible to calculate the velocity and position using an inertial navigation system (INS). To cope with this problem, an external acceleration was generated. To evaluate the proposed method, we compare the results of a Monte Carlo simulation and navigation HILS experiment.