• Title/Summary/Keyword: HILS(hardware-in-the-loop simulation)

Search Result 193, Processing Time 0.034 seconds

Development of Brake Controller for fixed-wing aircraft using hardware In-the-Loop Simulation

  • Lee, Ki-Chang;Jeon, Jeong-Woo;Hwang, Don-Ha;Kim, Yong-Joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.535-538
    • /
    • 2005
  • Today, most fixed-wing aircrafts are equipped with the antiskid brake system. It can modulate braking moments in the wheels optimally, when an aircraft is landing. So it can reduce landing distance and increase safeties. The antiskid brake system for an aircraft are mainly composed of braking moment modulators (hydraulic control valves) and brake control unit. In this paper, a Mark IV type - fully digital - brake controller is studied. For the development of its control algorithms, a 5-DOF (Degree of Freedom) aircraft landing model is composed in the form of matlab/simulink model at first. Then, braking moment control algorithms using wheel decelerations and slips are made. The developed algorithms are tested in software simulations using state-flow toolboxes in matlab/simulink model. Also, a real-time simulation systems are made, which use hydraulic brake systems of a real aircraft, pressure control valves and its controller as hardware components of HIL(Hardware In-the-Loop) simulation. Algorithms tested in software simulations are coded into the controller and the real-time landing simulations are made in very severe road conditions. The real-time simulation results are presented.

  • PDF

Dual Fuel Generator Modeling and Simulation for Development of PMS HILS (PMS HILS 구축을 위한 Dual Fuel Generator 모델링 및 시뮬레이션)

  • Hwang, Joon-Tae;Hong, Suk-Yoon;Kwon, Hyun-Wung;Lee, Kwang-Kook;Song, Jee-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.613-619
    • /
    • 2017
  • In this paper, DF(Dual Fuel) Generator modeling, which uses both conventional diesel fuel and LNG fuel, has been performed and monitoring system has been developed based on MATLAB/SIMULINK for the development of PMS(Power Management System) HILS(Hardware In the Loop Simulation). The principal components modeling of DF Generator are DF engine which provides the mechanical power and synchronous generator which convert the mechanical power into electrical power. Submodels, such as throttle body, intake manifold, torque generation and mass of LNG and diesel Quantity are used to perform DF engine. Also, governor is used for load sharing between paralleled DF generators to share a total load that exceeds the capacity of a single generator. To verify modeling of DF Generator designated ship lumped load Simulation is carried out. A validity of DF Generator has been verified by comparison between simulation results and estimated result from the designated lumped load.

HILS of the Braking System of a High Speed Train (고속전철 제동시스템의 HILS)

  • Hwang, Won-Ju;Kang, Chul-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.432-437
    • /
    • 2001
  • Korea High Speed Train(KHST) is supposed to run up 350km/h, in which the braking system has a crucial role for the safety of the train. In the design st데 of the braking system, its very hard to ac-quire information data for design guidelines. A HILS(Hardware-In-the-Loop Simulation) system can be used to get design data which could simulate the braking system of the real train in real-time. In this paper, cars are modelled including car dynamics, brake blending algorithms, pneumatic actuator dynamics, the models of each braking devices, adhesive coefficients, and soon. Real-time braking time, distance, and other design parameters are simulated using a DSP board and C language which shows the validity of the proposed method.

  • PDF

Development of the SVPG(Sungkyunkwan Univ. Virtual Proving Ground) : System Configuration and Application of the Virtual Proving Ground (가상주행시험장(SVPG) 개발: 가상주행시험장의 시스템 구성 및 운영)

  • 서명원;구태윤;권성진;신영수;조기용;박대유
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.195-202
    • /
    • 2002
  • By using modeling and simulation. today's design engineers are simultaneously reducing time to market and decreasing the cost of development, while increasing the quality and reliability of their products. A driving simulator is the best example of this method and allows virtual designs of control systems, electronic systems, mechanical systems and hydraulic system of a vehicle to be evaluated before costly prototyping. The objective of this Paper is to develop the virtual Proving: ground using a driving simulator and to show its capabilities of an automotive system development tool. For this purpose, including a real-time vehicle dynamics analysis system, the PC-based driving simulator and the virtual proving ground are developed by using VR(Virtual Reality) techniques. Also ABS HIL(Hardware-In-the-Loop ) simulation is performed successfully.

Anti Air Warfare analysis & Design of the Patrol Killer Experiment Combat System by the Model-Based-Simulation (모델 기반의 시뮬레이션 기법을 이용한 차기 고속정(Patrol Killer Experiment)용 전투체계 대공전 기능의 분석 및 설계)

  • Hwang, Kun-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.4
    • /
    • pp.23-31
    • /
    • 2007
  • Anti-Air Warfare(AAW) functionality of the naval combat system is the key functionality to ensure the ship's survivability. We have applied a novel method using model-based-simulation to analyze and design AAW functionality of the Patrol Killer Experimemnt Combat System. In this approach, an AAW functional model is described with the FSM(Finite State Machine) and directly executed for the AAW simulation. After prototyping using model based simulation, Hardware In Loop Simulation(HILS) is conducted as the AAW functionality is interfaced with the other ones of the combat system for completing the integration of the system components. This incremental and iterative development approach based on the model based simulation can minimize the development risks and costs caused by the system complexity for military system, bringing out the merit of the rapid prototyping.

  • PDF

Evaluation of Three-Phase Actuated Operation at Diamond Interchanges (다이아몬드 인터체인지의 3현시 감응제어 평가)

  • 이상수
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.2
    • /
    • pp.149-159
    • /
    • 2002
  • The performance of two single-barrier three-phase control systems at diamond interchanges was evaluated for various traffic conditions. To emulate the actuated signal control, hardware-in-the-loop system combined with CORSIM simulation program was used. Two performance measures, average delay and total stops, were used for the evaluation process. Results showed that the two three-phase systems gave similar performance in terms of average delay, but not stops. The delay performance of each phasing system was generally dependent on the traffic pattern and ramp spacing. However, there was a distinct movement preference for each phasing system. The total stops decreased as the spacing increased, and it was the most sensitive variable that can differentiate between the two three-phase systems. It was also shown that the hardware-in-the-loop control could be a good method to overcome the limitations of current simulation technology.

Scheme for Reducing Harmonics in Output Voltage of Modular Multilevel Converters with Offset Voltage Injection

  • Anupom, Devnath;Shin, Dong-Cheol;Lee, Dong-Myung
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1496-1504
    • /
    • 2019
  • This paper proposes a new THD reduction algorithm for modular multilevel converters (MMCs) with offset voltage injection operated in nearest level modulation (NLM). High voltage direct current (HVDC) is actively introduced to the grid connection of offshore wind powers, and this paper deals with a voltage generation technique with an MMC for wind power generation. In the proposed method, third harmonic voltage is added for reducing the THD. The third harmonic voltage is adjusted so that each of the pole voltage magnitudes maintains a constant value with a maximum number of (N+1) levels, where N is the number of sub-modules per arm. By using the proposed method, the THD of the output voltage is mitigated without increasing the switching frequency. In addition, the proposed method has advantageous characteristics such as simple implementation. As a part of this study, this paper compares the THD results of the conventional method and the proposed method with offset voltage injection to reduce the THD. In this paper, simulations have been carried out to verify the effectiveness of the proposed scheme, and the proposed method is implemented by a HILS (Hardware in the Loop Simulation) system. The obtained results show agreement with the simulation results. It is confirmed that the new scheme achieved the maximum level output voltage and improved the THD quality.

Performance Assessment of a Lithium-Polymer Battery for HEV Utilizing Pack-Level Battery Hardware-in-the-Loop-Simulation System

  • Han, Sekyung;Lim, Jawhwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1431-1438
    • /
    • 2013
  • A pack-level battery hardware-in-the-loop simulation (B-HILS) platform is implemented. It consists of dynamic vehicle models using PSAT and multiple control interfaces including real-time 3D driving and GPS mode. In real-time 3D driving mode, user can drive a virtual vehicle using actual drive equipment such as steering wheel and accelerator to generate the cycle profile of the battery. In GPS mode, actual road traffic and terrain effects can be simulated using GPS data while the trajectory is displayed on Google map. In the latter part of the paper, several performance tests of an actual lithium-polymer battery pack are carried out utilizing the developed system. All experiments are conducted as parts of actual development process of a commercial battery pack adopting 2nd generation Prius as a target vehicle model. Through the experiments, the low temperature performance and fuel efficiency of the battery are quantitatively investigated in comparison with the original nickel-metal hydride (NiMH) pack of the Prius.

A Design of Helicopter Control Law Rapid Prototyping Process Using HETLAS (HETLAS를 활용한 헬리콥터 비행제어 법칙 Rapid Prototyping 프로세스 설계)

  • Yang, Chang Deok;Jung, Ho-Che;Kim, Chang-Joo;Kim, Chong-Sup;Kim, Cheol-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.731-738
    • /
    • 2015
  • The rapid prototyping process and development tool which enable the control law evaluation efficiently are needed to minimize the development cycle, cost and risk of aircraft flight control system. This paper describes a development process that integrates the designed control law into HETLAS to evaluate simulation effectively using nonlinear mathematical models. The desktop engineering simulator was developed using HETLAS for the piloted simulation evaluation of a various control modes and the procedure was developed, which quickly integrates the HETLAS into HQS(Handling Quality Simulator) and HILS(Hardware In the Loop Simulation) environments. This paper presents a rapid prototyping process using HETLAS that significantly shortens the integration process of the control law into the nonlinear math model, HETLAS, and allows the control law designs to be quickly tested in the piloted simulation and HILS environments.

The Study of Gateway Control Module Using SAE J1939 Protocol (SAE J1939 프로토콜기반 Gateway 제어모듈 개발에 관한 연구)

  • Ko, Youngjin;Kim, Doyeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.128-136
    • /
    • 2013
  • This study presents the development of Gateway Control Module using SAE J1939 protocol for the commercial vehicles. Presently, the load rate of CAN bus is increased by the single network composition and addition of new ECUs for development of intelligent vehicles. Because the embedded system of the integrated network control function has the errors of the CAN bus caused by the increase of ECU, it is needed for development of commercial vehicles. Also, this study presents the development of smart functions that can diagnosis CAN bus errors, fault diagnosis of ECU and basic function that arbitrates CAN bus between ECUs of commercial vehicle. GCM was designed for 4channel separation about Gateway function as solution of load rate decrease and smart functions. HILS(Hardware in the loop simulation)system that can achieve simulation about CAN Messages of all systems on vehicle was applied to evaluate performance and verification of all functions and performance. The load rate on CAN bus was decreased at using functions what was delivery, block and process of GCM. Through this, it was enabled to organize systematic architecture for gateway.