• Title/Summary/Keyword: HIGHER CANOPY

Search Result 241, Processing Time 0.041 seconds

Influence of Tree Height on Vegetative Growth, Productivity, and Labour in Slender Spindle of 'Fuji'/M.9 Apple Trees ('Fuji'/M.9 사과나무에 있어 세장방추형의 수고가 영양생장, 생산성 및 노동력에 미치는 영향)

  • Yang, Sang-Jin;Park, Moo-Yong;Song, Yang-Yik;SaGong, Dong-Hoon;Yoon, Tae-Myung
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.492-501
    • /
    • 2009
  • This study was carried out to investigate influence of tree height on vegetable growth, productivity, and labor input in 5 year old slender spindle 'Fuji'/M.9 apple trees planted with the tree space of $3.2{\times}1.2m$ and trained to the tree height of 2.5m in the apple orchard of Apple Research Station, NIHHS, RDA in Gunwi County, Korea. Tree height was extended to the tree height of 4.0m for two years. And then, the tree height was restricted to 2.5 (control), 3.0, 3.5, and 4.0m in 8th year. Yield per 10a was 46, 25, and 4% higher at the tree height of 4.0, 3.5, and 3.0m than at the tree height of 2.5m respectively in first year and 17, 12, and 10% higher respectively, indicating the taller tree, the higher yield. Soluble solid contents was highest in the height of 2.5m than in any other treatments for 2 years, but fruit skin color was not clear. Labor input was increased parallel with the increase of tree height, but yield per labor input was decreased. Gross income and net income per 10a were increased parallel with the increase of tree height in first year, but not increased in second year. In considering production, labor input, and economic efficiency, the optimum tree height of slender spindle 'Fuji'/M.9 apple planted with the tree space of $3.2{\times}1.2m$ was presumed to be 3.0~3.5m.

Effects of Fertilizer Levels on Productivity and Quality of Pearl Millet (시비량이 진주조의 생산성 및 품질에 미치는 영향)

  • Keun-Yong Park;Rae-Kyung Park;Byeong-Han Choi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.4
    • /
    • pp.396-399
    • /
    • 1989
  • Pearl millet (Pennisetum americanum (L.) Leeke) is a promising forage crop that is resistant to biotic and abiotic stresses, and has a capability to grow well not only in the fertile soil, but also in the poor and dry soil, The objective of the study was to investigate the effects of increased fertilizer application level on the productivity and Quality of pearl millet in the old and newly reclaimed upland soils of Suwon, Chungju, Jeonju, Jinju and Jeju in Korea from 1986 to 1988, Plant height, green fodder yield, protein content and digestibility were increased by the increased fertilizer application level. However, the increased fertilizer application caused lodging, so that the plants grown above one meter in canopy height would be desiable to be clipped remaining 20cm above the ground surface before lodging, and fed to cattle, Mean green yields of the N 45-60kg/l0a application were 12.7-13.4t/l0a in the old upland soil. Increased phosphorus and potash fertilizer application also increased productivity, especially with potash fertilizer effect being higher than that of phosphorus fertilizer, In the newly reclaimed upland soil, improved and doubled fertilizer application plot of 60-60-40-4000kg/10a in N-P$_2$O$\sub$5/-K$_2$O-Compost was 38% higher being 12.6t/10a of green fodder yield as compared with standard fertilizer application plot, Pearl millet productivity and Quality were higher than those of maize and sorghum/sudan grass hybrids, particularly in green fodder yield, protein content and digestibility.

  • PDF

Nutrient Dynamics through Water Transport in Natural Deciduous Hardwood Forests in Chunchon, Kangwon Province (강원도 춘천지역 낙엽활엽수림에서의 수분이동에 따른 양분동태)

  • 진현오;손요환;이명종;박인협;김동엽
    • The Korean Journal of Ecology
    • /
    • v.26 no.1
    • /
    • pp.13-18
    • /
    • 2003
  • We examined water flux, concentrations and contents in nutrients in precipitation, throughfall, stemflow and soil solution in natural deciduous hardwood forest(Quercus variabilis and Q. mongolica) in Chunchon, Kangwon Province. The volume of throughfall was 2∼3% higher in Q. variabilis than in Q. monglica while volume of stemflow, Ao, A and B soil solution was 10∼15% higher in Q. variabilis compared to Q. monglica. Concentrations of K/sup +/ increased in throughfall H while concentrations of Ca/sup 2+/, Mg/sup 2+/ and NO₃/sup -/ increased in Ao soil solution. The former might be related to the canopy leaching and the latter related to leaching and nitrification in Ao horizon. Nutrient concentrations in throughfall, Ao, A and B soil solution decreased with increasing amount of water and especially the decreases in concentrations of K/sup +/, Mg/sup 2+/ and Cl/sup -/ were significant. Nutrient concentrations of Ca/sup 2+/ in Ao soil solution was 1.5 times higher in Q. variabilis than in Q. mongolica. However, there were no significant nutrient concentration differences in throughfall, stemflow and A and B soil solution between the two forest types. Stemflow was less than 10% of total water volume (throughfall + stemflow) to the forest floor, and contribution of stemflow to nutrient cycling seemed to be low in the study forest.

Rooting-Potential of Sod by Transplanting Time and Turfgrass Species (이식 시기와 초종에 따른 잔디뿌리의 활착력)

  • 주영규;김덕환;이성호;이정호
    • Asian Journal of Turfgrass Science
    • /
    • v.17 no.2_3
    • /
    • pp.67-73
    • /
    • 2003
  • A series of studies was conducted during 2 years to investigate the effect of transplanting time and turfgrass species on turf establishment rate of sod for 2002 World Cup Soccer ground construction. The required period of rooting and turf growth for acceptable soccer playing quality on transplanted sod from nursery was tested to collect data for the project authorities of hosting cities and construction companies who were involved in World Cup stadium project. Transplanting time significantly affects on rooting-potential of sod on cool season grass and zoysiagrass, but those effects differently showed by turfgrass species. The enough nursing period for the ground established by Zousiagrass should be secured with proper transplanting time. And the thermal insulation on the turf canopy with other maintenance during Winter should improve the early rooting on zoysiagrass. The sod contained Kentucky bluegrass (85%+15% perennial ryegrass, seed wt. basis) showed relatively slow at the early growth and rooting-potential of root, but the potential resulted higher than that of perennial ryegrass turf (85%+15% Kentucky) under longer nursing period. Kentucky bluegrass has one of the most strong resistance against environmental stresses, but intensive maintenance practise should be required when the turf transplanted during summer season. Higher mixture rate of perennial ryegrass sod has a rapid root growth compare with other turfgrass species. The rate provided a benefit to an early establishment of turf ground followed by a proper maintenance practise. For the completion of World Cup soccer ground construction for 2002, the most suitable time for sod transplanting in 2001 was March to May or mid Sept. to early Oct. by delayed architect construction schedule.

Effect of KIM-112 Application on Internode Elongation and Lodging Characteristics in Paddy Rice (KIM-112 처리(處理)가 수도의(水稻) 절간신장(節間伸長), 도복(倒伏) 및 수량(收量)에 미치는 영향(影響))

  • Im, I.B.;Jun, B.T.;Park, S.H.
    • Korean Journal of Weed Science
    • /
    • v.9 no.3
    • /
    • pp.221-229
    • /
    • 1989
  • This study is conducted to evaluate the effect of KIM-112 (Ca-3, 5-diode-4-propyonly-cyclohexane-1-carboxylate) application at 13, 8 and 3 days before heading for the possibility of lodging prevention, growing pattern of several organisms, growth and yield in paddy rice. KIM-112 was the most effective in reducing elongation of the third internode when it was applied at 13 days before heading(13DBH) and the second internode when it was applied at 8DBH and 3. KIM-112 gradually inhibited internode elongation of rice with increase in dosage starting from 1.0ga.i./10a. The culm length shortened by 7-17% at 3DBH. The maximum distribution of leaf blade at canopy structure was positioned higher on KIM-112 application than on untreated. Lodging index decreased by 8-47% on KIM-112 application and field lodging degree(0-5) was 5 at untreated but KIM-112 application was only 1.3-2.0 of 3 DBH and was little lodging of 8-13 DBH. Ripened grain ratio of KIM-112 application were higher than those of untreated. Yield increased by 27-37% at KIM-112 application.

  • PDF

Characteristics of Vegetation Structure in Chamaecyparis Obtusa Stands (편백림의 식생구조 특성 분석)

  • Park, Seok-Gon;Kang, Hyun-Mi
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.6
    • /
    • pp.907-916
    • /
    • 2015
  • The purpose of this study was to identify characteristics of vegetation structure, vegetation succession, and species diversity of artificially planted Chamaecyparis obtusa (CO) stands. The study was carried out by performing vegetation survey for eight CO stands located in Jeollanam-do Province, Korea. Analysis on vegetation classification and ordinations of the stands was conducted using the data from the vegetation survey, and as a result, the stands were classified into five types of communities. Community I showed a considerably lower index of species diversity when compared to other communities because the canopy of the dominant CO was so highly dense that the low-height vegetation was not able to develop or the low-height vegetation almost disappeared due to elimination of weed trees. Meanwhile, the Community II - IV had relatively higher indices of species diversity because various native tree species mixed with the low-height vegetation and competed with each other in the understory and shrub layers to some degree of stability or in their early stage of vegetation development. Community V, lastly, showed higher use intensity as a recreational forest, thus developing simpler vegetation structure on account of artificial intervention. There was positive correlation between photosynthetically active radiation entering the forest floor, number of observed species and index of species diversity. Such characteristics of vegetation structure in CO stands are closely associated with forest management and prescription for planting reforestation, thinning, and brush cutting in the past. There was a slight difference in vegetation structure and species diversity by communities, based on rotation time of the vegetational succession, process of disturbance frequency and disturbance, development, and maturity by planting CO stands. However, when compared to natural forests, the CO stands showed simpler vegetation structure. Because artificial forests are vulnerable in ecosystem service with lower species diversity, a drive for ecological management is needed for such forests to change into healthy ecosystems that can display functions of public benefit.

Evaluation of Growth and Yield on Transplanting time and Plant Density in ItalianRyegrass

  • Yun-Ho Lee;Hyeon-Soo Jang;Jeong-Won Kim;Bo-kyeong Kim;Deauk-Kim;Jong-Tak Youn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.101-101
    • /
    • 2022
  • In recent years, due to climate change, the livestock industry has become more interested in the production of forage crops. In Korea, more than 74% of forage crops are cultivated in winter rice fields. In particular, Italian ryegrass (IRG) is depends on imports for more than 70% of its seeds. In generally, the IRG rapeseed cultivation method involves sowing from early October to mid-October by drill sowing seeding or spot seedling. However, the sowing period is delayed due to frequent rainfall during. And, same period require a lot of seeds. However, raising seedlings and transplanted IRG will overcome weather conditions and reduce the amount of seeds. This study was intended to be applied to the domestic IRG seed industry in the future through growth and quantity evaluation according to transplant time and planting density for the production of good quality IRG seeds in rice paddy fields. In this study, transplanting time (October 20, October 30, November 10) and planting density (50, 70, and 80) were cultivated at the National Institute of Crop Science in 2021. The amount of fertilizer applied was adjusted to (N-P2O5-K2O) 4.5-12-12 (kg/10a), and then 2.2(kg/10a) of nitrogen was added each year. For the growth survey, leaf area, canopy coverage, plant length, and seed yield were investigated. Along with the transplanting time, the plant length was higher on October 20 than on October 30 and November 10. On the other hand, leaf area index changes differed depending on the transplanting time and planting density, and were particularly high on October 20, 80 density and 70 density, but similar on October 30 and November 10. 1000 seed weight showed no difference with transplanting time and planting density. On the other hand, the seed yield was 215(kg/10a) for 80 density on October 20, 211(kg/10a) for 70 density, 118(kg/10a) for 50 density, and 80 density for October 30 and November 10. and 70 density did not differ. On the other hand, the 50 density on October 30 and November 10 were 164(kg/10a) and 147(kg/10a) respectively. As can be seen from this study, the earlier the transplant, the higher the seed yield. However, the 50 density was reduced in yield compared to the 70 density and 80 density.

  • PDF

Sensitivity and Self-purification Function of Forest Ecosystem to Acid Precipitation (II) - Ion Balance in Vegetation and Soil Leachate - (산성우(酸性雨)에 대한 산림생태계(山林生態系)의 민감도(敏感度) 및 자정기능(自淨機能)(II) - 식생층(植生層)과 토양층(土壤層) 용탈(溶脫)이온 분석(分析)을 중심으로 -)

  • Chang, Kwan Soon;Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.1
    • /
    • pp.103-113
    • /
    • 1995
  • To estimate buffer capacity and sensitivity of forest ecosystem to acid rain in Taejon, ionic components of throughfall, stemflow, soil leachate, and open rain in Pinus rigida and Quercus variabilis forest were analysed. The spatial sensitivity based on parent rock and forest type was given by IDRISI of GIS which created imagery conversion from soil and vegetation map. Parent rocks and soils were classified into acidic, sedimentary, metamorphic rock and then subdivided based on $SiO_2$ content. Average pH of vegetation leachate was higher in throughfall but lower in stemflow than open rain and higher in Quercus variabilis forest than in Pinus rigida forest. The flow of $SO{_4}^{2-}$, $NO_3{^-}$ and $Cl^-$ through vegetation leaching(throughfall plus stemflow) into soil were 7.2, 4.3, and 2.5 times, respectively, higher in Pinus rigida forest and 4.4, 2, and 2.5 times, respectively, higher in Quercus variabilis forest than in open field. But the concentration of exchangeable cations was 4.1 times higher in Pinus rigida forest and 4.6 times higher in Quercus variabilis forest than in open field. Average pH of soil leachate was lower than that of throughfall, but higher than that of stemflow. The concentration of exchangeable canons and $Al^{3+}$ in soil leachate were more in Pinus rigida forest than in Quercus variabilis forest and increase signficantly with the increase of acidic deposits. Pinus forest had more deposition and canopy interception of acidic pollutants and more nutrient loss than Quercus forest, and Quercus forest had more cation exchange and proton consumption and than consequently had less nutrient loss and better buffer capacity than Pinus forest. The 69% of forest soils was distributed on acidic rock, 25% of it on metamorphic rock, and 6% of it on intermediate and basic rock. Acidic rock residuals which had low very canon exchange capacity and high sensitivity to acid rain occupied a half of total forest land in Taejon area. Therefore forests in Taejon showed high vulnerability to acid rain and will receive much more stress with the increase of acid rain precursors.

  • PDF

Changes of Leaf Characteristics, Pigment Content and Photosynthesis of Forsythia saxatilis under Two Different Light Intensities (광량 차이에 의한 산개나리의 엽 특성과 광색소 함량 및 광합성 변화)

  • Han, Sim-Hee;Kim, Du-Hyun;Kim, Gil Nam;Byun, Jae-Kyung
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.609-615
    • /
    • 2011
  • Forsythia saxatilis is a Korean endemic plant designated as rare and endangered by the Korea Forest Service (KFS). Growth and physiological characteristics of F. saxatilis were investigated under two different light intensities in order to figure out an appropriate growth environment for conservation and restoration of the species in its natural habitat. Shoot length, leaf size and weight, photosynthetic pigment content and photosynthetic parameters were measured for F. saxatilis grown at two experimental plots under relative light intensities (RLI) of 20% and 60% of the full sun, respectively. Fresh leaf weight of plants grown under high relative light intensities (RLI-60) exceeded that of plants grown at 20% RLI. The ratio of fresh leaf weight to leaf size at RLI-60 was 1.47 times superior comparing to that recorded at RLI-20. The content of photosynthetic pigments such as chlorophyll a, b and carotenoid were higher in plants grown at RLI-60, whereas the ratio of total chlorophyll to carotenoid content was higher in the leaves at RLI-20. Photosynthetic rate, stomatal conductance and transpiration rate at RLI-60 were, respectively, 2.5, 2.65 and 1.79 times higher comparing to those recorded at RLI-20. Water use efficiency, however, was higher at RLI-20. The chlorophyll/nitrogen ratio was 1.83 times higher at RLI-20 than at RLI-60. In contrast, the ratio of net photosynthesis to chlorophyll content at RLI-60 was 2.58 times higher than that of RLI-20. In conclusion, light intensity might be the major factor affecting growth and physiological characteristics of F. saxatilis grown under canopy of tall tree species.

Impact of Elevated Carbon Dioxide, Temperature, and Drought on Potato Canopy Architecture and Change in Macronutrients (상승된 이산화탄소와 온도 그리고 한발 영향에 따른 감자의 군락 형태와 무기영양 변화)

  • Lee, Yun-Ho;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyong;Baek, Jae-Kyeong;Seo, Myung-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.164-173
    • /
    • 2018
  • Elevated atmospheric carbon dioxide concentration ($CO_2$) is a major component of climate change, and this increase can be expected to continue into the crop and food security in the future. In this study, Soil-Plant-Atmosphere-Research (SPAR) chambers were used to examine the effect of elevated $CO_2$, temperature, and drought on the canopy architecture and concentration of macronutrients in potatoes (Solanum tuberosum L.). Drought stress treatments were imposed on potato plants 40 days after emergence. Under AT+2.8C700 (30-year average temperature + $2.8^{\circ}C$ at $700{\mu}mol\;mol^{-1}$ of $CO_2$), at maximum leaf area, elevated $CO_2$, and no drought stress, a significant increase was observed in both the aboveground biomass and tuber, and for the developmental stage. Even though $CO_2$ and temperature had increased, AT+2.8C700DS (30-year average temperature + $2.8^{\circ}C$ at $700{\mu}mol\;mol^{-1}$ of $CO_2$ under drought stress) under drought stress showed that the leaf area index (LAI) and dry weight were reduced by drought stress. At maturity, potatoes grown under $CO_2$ enrichment and no drought stress exhibited significantly lower concentrations of N and P in their leaves, and of N, P, and K in tubers under AT+2.8C700. In contrast, elevated $CO_2$ and drought stress tended to increase the tuber Mg concentration under AT+2.8C700DS. Plants grown in AT+2.8C700 had lower protein contents than plants grown under ATC450 (30-year average temperature at $400{\mu}mol\;mol^{-1}$ of $CO_2$). However, plants grown under AT+2.8C700 showed higher tuber bulking than those grown under AT+2.8C700DS. These findings suggest that the increase in $CO_2$ concentrations and drought events in the future are likely to decrease the macronutrients and protein concentrations in potatoes, which are important for the human diet.