• 제목/요약/키워드: HGF-1

Search Result 73, Processing Time 0.03 seconds

Involvement of Bcl-2 Family and Caspases Cascade in Sodium Fluoride-Induced Apoptosis of Human Gingival Fibroblasts

  • Jung, Ji-Yeon;Park, Jae-Hong;Jeong, Yeon-Jin;Yang, Kyu-Ho;Choi, Nam-Ki;Kim, Sun-Hun;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.5
    • /
    • pp.289-295
    • /
    • 2006
  • Sodium fluoride (NaF) has been shown to be cytotoxic and elicit inflammatory response in human. However, the cellular mechanisms underlying NaF-induced cytotoxicity in periodontal tissues have not yet been elucidated. This study is aimed to investigate the mechanisms of NaF-induced apoptosis in human gingival fibroblast (HGF). NaF decreased the cell viability of HGF in a dose- and time-dependent manner. NaF gave rise to apoptotic morphological changes including cell shrinkage, chromatin condensation, and DNA fragmentation. However, NaF did not affect the production of ROS. In addition, NaF augumented cytochrome c release from mitochondria into the cytosol, and enhanced caspase -9 and -3 activities., cleavage (85 kDa fragments) of poly (ADP-ribose) polymerase (PARP) and upregulation of voltage-dependent anion channel (VDAC) 1. These results demonstrated that NaF-induced apoptosis in HGF may be mediated with mitochondria. Furthermore, NaF elevated caspase-8 activity and upregulated Fas-ligand (Fas-L), suggesting involvement of death receptor mediated pathway in NaF-induced apoptosis. Expression of Bcl-2, an anti-apoptotic Bcl-2 family, was downregulated, whereas expression of Bax, a pro-apoptotic Bcl-2 family, was not affected in NaF-treated HGF. These results suggest that NaF induces apoptosis in HGF through both mitochondria- and death receptor-mediated pathway mediated by Bcl-2 family.

Anti-inflammatory and Antioxidative Effects of Lotus Root Extract in LPS-PG-Stimulated Human Gingival Fibroblast-1 Cells (치주염 원인균 LPS-PG로 유도된 인체 치은섬유아세포에서 연뿌리 추출물에 대한 항염증 및 항산화 효과)

  • Lee, Young-Kyung;Kim, Chul Hwan;Jeong, Dae Won;Lee, Ki Won;Oh, Young Taek;Kim, Jeong Il;Jeong, Jin-Woo
    • Korean Journal of Plant Resources
    • /
    • v.35 no.5
    • /
    • pp.565-573
    • /
    • 2022
  • Gingival inflammation is one of the main causes that can be related to various periodontal diseases. Human gingival fibroblast (HGF) is the major constituent in periodontal connective tissue and secretes various inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), upon lipopolysaccharide stimulation. This study is aimed at investigating the anti-inflammatory and antioxidative activities of Lotus Root extract (LRE) in Porphyromonas gingivalis derived lipopolysaccharide (LPS-PG)-stimulated HGF-1 cells. The concentration of NO and PGE2, as well as their responsible enzymes, inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2), was analyzed by Griess reaction, ELISA, and western blot analysis. LPS-PG sharply elevated the production and protein expression of inflammatory mediators, which were significantly attenuated by LRE treatment in a dose-dependent manner. LRE treatment also suppressed activation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response gene 88 (MyD88) and nuclear factor-κB (NF-κB) in LPS-PG-stimulated HGF-1 cells. In addition, one of phase II enzyme, NAD(P)H quinone dehydrogenase (NQO)-1, and its transcription factor, Nuclear factor erythroid 2-related factor 2 (Nrf2), were significantly induced by LRE treatment. Consequently, these results suggest that LRE ameliorates LPS-PG-induced inflammatory responses by attenuating TLR4/MyD88-mediated NF-κB, and activating NQO-1/Nrf2 antioxidant response element signaling pathways in HGF-1 cells.

Cellular viability and genetic expression of human gingival fibroblasts to zirconia with enamel matrix derivative ($Emdogain^{(R)}$)

  • Kwon, Yong-Dae;Choi, Hyun-Jung;Lee, Heesu;Lee, Jung-Woo;Weber, Hans-Peter;Pae, Ahran
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.406-414
    • /
    • 2014
  • PURPOSE. The objective of this study was to investigate the biologic effects of enamel matrix derivative (EMD) with different concentrations on cell viability and the genetic expression of human gingival fibroblasts (HGF) to zirconia surfaces. MATERIALS AND METHODS. Immortalized human gingival fibroblasts (HGF) were cultured (1) without EMD, (2) with EMD $25{\mu}g/mL$, and (3) with EMD $100{\mu}g/mL$ on zirconia discs. MTT assay was performed to evaluate the cell proliferation activity and SEM was carried out to examine the cellular morphology and attachment. The mRNA expression of collagen type I, osteopontin, fibronectin, and TGF-${\beta}1$ was evaluated with the real-time polymerase chain reaction (RT-PCR). RESULTS. From MTT assay, HGF showed more proliferation in EMD $25{\mu}g/mL$ group than control and EMD $100{\mu}g/mL$ group (P<.05). HGFs showed more flattened cellular morphology on the experimental groups than on the control group after 4h culture and more cellular attachments were observed on EMD $25{\mu}g/mL$ group and EMD $100{\mu}g/mL$ group after 24h culture. After 48h of culture, cellular attachment was similar in all groups. The mRNA expression of type I collagen increased in a concentration dependent manner. The genetic expression of osteopontin, fibronectin, and TGF-${\beta}1$ was increased at EMD $100{\mu}g/mL$. However, the mRNA expression of proteins associated with cellular attachment was decreased at EMD $25{\mu}g/mL$. CONCLUSION. Through this short term culture of HGF on zirconium discs, we conclude that EMD affects the proliferation, attachment, and cell morphology of HGF cells. Also, EMD stimulates production of extracellular matrix collagen, osteopontin, and TGF-${\beta}1$ in high concentration levels. CLINICAL RELEVANCE. With the use of EMD, protective barrier between attached gingiva and transmucosal zirconia abutment may be enhanced leading to final esthetic results with implants.

A study on the increase of Physiological Activity as a Functional Cosmetic Composition of Hwangryunhaedoktang-Gamibang Fermented with Lactiplantibacillus Plantarum (Lactiplantibacillus plantarum으로 발효한 황련해독탕 가미방의 기능성 화장품 조성물로서의 생리활성 증대에 관한 연구)

  • Seo, Sang Wan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.35 no.6
    • /
    • pp.228-234
    • /
    • 2021
  • Hwangryunhaedoktang is one of the prescriptions used in traditional medicine for skin diseases. In this study, Hwangryunhaedoktang-Gamibang (HG) was fermented with Lactiplantibacillus plantarum, a probiotic lactic acid bacterium, to evaluate its potential as a functional cosmetic composition. Strains with anti-inflammatory activity were selected by isolating lactic acid bacteria from kimchi, a traditional Korean fermented food. HG was inoculated with lactic acid bacteria and the viability was measured. The supernatant was obtained by centrifugation of fermented Hwangryunhaedoktang-Gamibang (HGF) and HG, and the filtered supernatant was freeze-dried and used in the experiment. By measuring DPPH and ABTS scavenging activity, it was confirmed that the antioxidant activity was increased. RAW264.7 cells were inoculated with HG and HGF to confirm anti-inflammatory activity through NO assay, and production levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) were measured through ELISA assay. It was confirmed that HGF had a greater decrease in production than HG. Through lactobacilli fermentation, the beneficial probiotic properties and antioxidant and pro-inflammatory activities of lactic acid bacteria suggest potential clinical or technical applications.

Antimicrobial effect of Australia propolis on cariogenic and periodontopathic bacteria

  • Lim, Yun Kyong;Yoo, So Young;Lee, Dae Sung;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.44 no.4
    • /
    • pp.191-194
    • /
    • 2019
  • The purpose of this study was to investigate the antimicrobial effects of Australia propolis against cariogenic and periodontopathic bacteria. Antimicrobial activity was determined by evaluating the minimal bactericidal concentration (MBC). Cell cytotoxicity of propolis extract on normal human gingival fibroblast (HGF-1) cells was observed using the methylthiazolyldiphenyl-tetrazolium bromide assay. The data indicated that, with the exception of Aggregatibacter actinomycetemcomitans (KCOM 1306), the MBC values of the propolis strains were 0.25-1% without HGF-1 cell cytotoxicity. These results suggest that propolis can be used to develop oral hygiene products for the prevention of oral infectious disease.

Inhibitory Effects of Panduratin A on Periodontitis-Induced Inflammation and Osteoclastogenesis through Inhibition of MAPK Pathways In Vitro

  • Kim, Haebom;Kim, Mi-Bo;Kim, Changhee;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.190-198
    • /
    • 2018
  • Periodontitis is an inflammatory disease caused by microbial lipopolysaccharide (LPS), destroying gingival tissues and alveolar bone in the periodontium. In the present study, we evaluated the anti-inflammatory and anti-osteoclastic effects of panduratin A, a chalcone compound isolated from Boesenbergia pandurata, in human gingival fibroblast-1 (HGF-1) and RAW 264.7 cells. Treatment of panduratin A to LPS-stimulated HGF-1 significantly reduced the expression of interleukin-$1{\beta}$ and nuclear factor-kappa B (NF-${\kappa}B$), subsequently leading to the inhibition of matrix metalloproteinase-2 (MMP-2) and MMP-8 compared with that in the LPS control ($^{**}p$ < 0.01). These anti-inflammatory responses were mediated by suppressing the mitogen-activated protein kinase (MAPK) signaling and activator protein-1 complex formation pathways. Moreover, receptor activator of NF-${\kappa}B$ ligand (RANKL)-stimulated RAW 264.7 cells treated with panduratin A showed significant inhibition of osteoclastic transcription factors such as nuclear factor of activated T-cells c1 and c-Fos as well as osteoclastic enzymes such as tartrate-resistant acid phosphatase and cathepsin K compared with those in the RANKL control ($^{**}p$ < 0.01). Similar to HGF-1, panduratin A suppressed osteoclastogenesis by controlling MAPK signaling pathways. Taken together, these results suggest that panduratin A could be a potential candidate for development as a natural anti-periodontitis agent.

Effect of Radiation Dosage Changes on the Cell Viability and the Apoptosis Induction on Normal and Tumorigenic Cells (방사선의 선량변화가 수종의 정상세포와 종양세포주의 세포활성도와 apoptosis 유발에 미치는 영향)

  • Park In-Woo;Lee Sam-Sun;Heo Min-Suk;Choi Soon-Chul
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.2
    • /
    • pp.435-449
    • /
    • 1999
  • Purpose : The study was aimed to detect the differences in the cell viability and the apoptosis induction after irradiation on normal and tumorigenic cells. Materials and Methods : The study. that was generated for two human normal cells(RHEK, HGF-l) and two human tumor cells(KB. HT-1080). was tested using MTT assay at 1 day and 3 day after irradiation and TUNEL assay under confocal laser scanning microscope at 1 day after irradiation. Single irradiation of 0.5. 1, 2. 4. and 8Gy were applied to the cells. The two fractions of 1. 2. 4. and 8Gy were separated with a 4-hour time interval. The irradiation was done with 5.38Gy/min dose rate using Cs-137 irradiator at room temperature. Results and Conclusions : 1. In 3-day group. the cell viability of HGF-1 cell was significantly decreased at 2. 4 and 8Gy irradiation, the cell viability of KB cell was significantly decreased at 8Gy irradiation and the cell viability of HT-I080 cell was significantly decreased at 4 and 8Gy irradiation. 2. There was significant difference between RHEK and KB cell line in the cell viability of 3-day group at 8Gy irradiation. There was significant difference between RHEK and HGF-1 cell line in the cell viability of 3-day group at 4 and 8Gy irradiation. 3. There was a significantly decreased cell viability in 3-day group than those in 1-day group at 2. 4 and 8Gy on HGF-1 cell. at 4 and 8Gy on HT-I080 cell. at 8Gy on KB cell. 4. We could detect DNA fragmented cells only on KB cell. Number of apoptotic cells of KB cell was significantly increased at 4 and 8Gy irradiation. However, there was no correlation between cell viability and apoptosis. 5. On all 4 cell lines, there were no differences between single and split irradiation method in cell viability and apoptosis.

  • PDF

EFFECT OF HEPATOCYTE GROWTH FACTOR ON THE REPAIR OF DEFECT IN THE ARTICULAR DISC IN RABBIT TEMPOROMANDIBULAR JOINT (가토의 측두하악관절원판 결손에서 간세포 성장인자가 치유에 미치는 영향)

  • Kim, Bok-Joo;Seong, Hwa-Sik;Kim, Chul-Hoon;Kim, Gyoo-Cheon;Hwang, Hee-Sung;Shin, Sang-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Purpose: The purpose of this study is to investigate the therapeutic use of Hepatocyte growth factor(Adv.CMV.HGF) in temporomandibular joint disc defect. Materials and methods: Twelve New Zealand white rabbits, weighing 2.5 - 3.0 kg, were used in this experiment. Defects(2 mm in diameter) were created in their TMJ discs. Recombinant Adv.CMV.HGF with gelatin sponge($Gelfoam^{(R)}$) as carrier was implanted in the defects. We divided the rabbits into four batches according to the duration of the implantation - of 1, 4, 8, 12 weeks - and both left and right TMJ of each rabbit in all groups were used in the research : left joints were used as experiment group and right were control group. Each batch of rabbits was killed one, four, eight and twelve weeks after the experimentation respectively, and called Group A, B, C, and D. (Group A = 1 wk, B = 4 wks, C = 8 wks, and D = 12 wks) Results: The experimental group showed a significant increase in the number of chondroblasts and active cell differentiation at the margin of the defects. Compared to the control group, in the experiment group chondroblasts increased and chondrocytes showed a columnar arrangement, which is witnessed at the time of cell differentiation. Conclusion: This study supports the case that Avd.CMV.HGF may be useful in the repair of articular disc of the rabbit TMJ.

Analgesic and Anti-inflammatory Activity of Resina Pini

  • Seo, Young-A;Suk, Kui-Duk
    • Natural Product Sciences
    • /
    • v.13 no.4
    • /
    • pp.347-354
    • /
    • 2007
  • In this study, we investigated the potential of Resina Pini (RP) for anti-inflammatory and analgesic agents to treat inflammatory diseases such as gingivitis and periodontitis. Crude RP (RP1), recrystallized RP (RP2), and Ramus Mori Albae-treated RP (RP3), plus their respective water extracts (RP1-WE, RP2-WE and RP3-WE) were prepared for in vitro and in vivo tests. We couldn't find any signs of heavy metals pollution in all the RP samples. RP2-WE exhibited the highest viability of human gingival fibroblasts (HGF) and the strongest scavenging activity on superoxide anion. RP1, RP2 and RP3, RP2 showed potent scavenging activity on DPPH free radical. RP2-WE displayed a stronger inhibition on hyaluronidase (HAase) activity and RP3 also displayed potent HAase inhibition. RP2-WE, RP3-WE, RP3 and RP2 were reduced admirably the production of $PGE_2$ in HGF. In addition, RP2-WE and RP3-WE exhibited potent inhibitory activities on arachidonic acid-induced ear edema in mouse. Moreover, RP-2 prevented completely acetic acid-induced writhing by 100.0% and RP1, RP3, RP1-WE and RP2-WE also exhibited excellent protective activities against writhing. While aminopyrine, the positive control, showed 76.9% analgesic effect at the same dose. Taken together, these results suggest that recrystallized aqueous extract of Resina Pini could be a promising drug for the treatment of periodontal diseases.

Maintenance of Proliferation and Adipogenic Differentiation by Fibroblast Growth Factor-2 and Dexamethasone Through Expression of Hepatocyte Growth Factor in Bone Marrow-derived Mesenchymal Stem Cells

  • Oh, Ji-Eun;Eom, Young Woo
    • Biomedical Science Letters
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Several studies have investigated the various effects of dexamethasone (Dex) on the proliferation and differentiation of mesenchymal stem cells (MSCs). Previously, we reported that co-treatment with L-ascorbic acid 2-phosphate and fibroblast growth factor (FGF)-2 maintained differentiation potential in MSCs through expression of hepatocyte growth factor (HGF). In this study, we investigated the effects of co-treatment with FGF-2 and Dex on the proliferation and differentiation potential of MSCs during a 2-month culture period. Co-treatment with FGF-2 and Dex increased approximately a 4.7-fold higher accumulation rate of MSC numbers than that by FGF-2 single treatment during a 2-month culture period. Interestingly, co-treatment with FGF-2 and Dex increased expression of HGF and maintained adipogenic differentiation potential during this culture period. These results suggest that co-treatment with FGF-2 and Dex preserves the proliferation and differentiation potential during long-term culture.