• Title/Summary/Keyword: HF2V

Search Result 212, Processing Time 0.029 seconds

Temperature Dependence of the Vibration-Vibration Energy Transfer for HF(v = n) + $H_2$(v = 0) and DF(v = n) + $D_2$(v = 0)

  • Lee, Chang-Soon;Kim, Yoo-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.11-17
    • /
    • 1992
  • Vibration-to-vibration energy transfer probabilities for $HF(v=n)+H_2(v=0){\to}HF(v=n-1)+H_2(v=1)$ and $DF(v=n)+D_2(v=0){\to}DF(v=n-1)+D_2(v=1)$ including both the vibration-to-vibration and translation (V-V, T) and vibration-to-vibration and rotation (V-V, R) energy transfer paths have been calculated semiclassically using a simplified collision model and Morse-type intermolecular interaction potential. The calculated results are in reasonably good agreement with those obtained by experimental studies. They also show that the transition processes for $HF(v=1-3)+H_2(v=0){\to}HF(v=0-2)+H_2(v=1)$ and $DF(v=1,\;4)+D_2(v=0){\to}DF(v=0,\;3)+D_2(v=1)$ are strongly dependent on the V-V, T path at low temperature but occur predominantly via the V-V, R path with rising temperature. The vibration-to-vibration energy transfer for $HF(v=4)+H_2(v=0){\to}HF(v=3)+H_2(v=1)$ and $DF(v=2-3)+D_2(v=0){\to}DF(v=1-2)+D_2(v=1)$ occur predominantly via V-V, R path and V-V, T path through whole temperatures, respectively.

Comparative Investigation of Interfacial Characteristics between HfO2/Al2O3 and Al2O3/HfO2 Dielectrics on AlN/p-Ge Structure

  • Kim, Hogyoung;Yun, Hee Ju;Choi, Seok;Choi, Byung Joon
    • Korean Journal of Materials Research
    • /
    • v.29 no.8
    • /
    • pp.463-468
    • /
    • 2019
  • The electrical and interfacial properties of $HfO_2/Al_2O_3$ and $Al_2O_3/HfO_2$ dielectrics on AlN/p-Ge interface prepared by thermal atomic layer deposition are investigated by capacitance-voltage(C-V) and current-voltage(I-V) measurements. In the C-V measurements, humps related to mid-gap states are observed when the ac frequency is below 100 kHz, revealing lower mid-gap states for the $HfO_2/Al_2O_3$ sample. Higher frequency dispersion in the inversion region is observed for the $Al_2O_3/HfO_2$ sample, indicating the presence of slow interface states A higher interface trap density calculated from the high-low frequency method is observed for the $Al_2O_3/HfO_2$ sample. The parallel conductance method, applied to the accumulation region, shows border traps at 0.3~0.32 eV for the $Al_2O_3/HfO_2$ sample, which are not observed for the $Al_2O_3/HfO_2$ sample. I-V measurements show a reduction of leakage current of about three orders of magnitude for the $HfO_2/Al_2O_3$ sample. Using the Fowler-Nordheim emission, the barrier height is calculated and found to be about 1.08 eV for the $HfO_2/Al_2O_3$ sample. Based on these results, it is suggested that $HfO_2/Al_2O_3$ is a better dielectric stack than $Al_2O_3/HfO_2$ on AlN/p-Ge interface.

Vibration-to-Vibration Energy Transfer Between HF and DF in the Mixture (HF와 DF 혼합계내에서의 상호간 진동-진동 에너지 이동)

  • Chang Soon Lee;Yoo Hang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.26-33
    • /
    • 1984
  • The rate constants for the following vibration-to-vibration energy exchange reactions have been calculated theoretically for the temperature range from 300 to 800K and for n = 2 to 5. HF(v=n) + DF(v=0) ${\to}$ HF(v=n-l) + DF(v=l) + ${\Delta}E$(a) DF(v=n) + HF(v=0) ${\to}$ DF(v=n-l) + HF(v=l) + ${\Delta}E$(b) In calculation the loosely-held, non-rigid dimer collision model and semiclassical method have been employed. The results show that the rate constants for the processes (a) are much greater than those for the processes (b). Also, it is found that the rate constants for the processes (a) increase with decreasing temperature and with increasing quantum number, while those for the processes (b) show the opposite tendencies. These findings are explained in terms of the sign and magnitude of the energy mismatch, ${\Delta}E$.

  • PDF

Structural and electrical characterizations of $HfO_{2}/HfSi_{x}O_{y}$ as alternative gate dielectrics in MOS devices (MOS 소자의 대체 게이트 산화막으로써 $HfO_{2}/HfSi_{x}O_{y}$ 의 구조 및 전기적 특성 분석)

  • 강혁수;노용한
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.45-49
    • /
    • 2001
  • We have investigated physical and electrical properties of the Hf $O_2$/HfS $i_{x}$/ $O_{y}$ thin film for alternative gate dielectrics in the metal-oxide-semiconductor device. The oxidation of Hf deposited directly on the Si substrate results in the H $f_{x}$/ $O_{y}$ interfacial layer and the high-k Hf $O_2$film simultaneously. Interestingly, the post-oxidation N2 annealing of the H102/H1Si70y thin films reduces(increases) the thickness of an amorphous HfS $i_{x}$/ $O_{y}$ layer(Hf $O_2$ layer). This phenomenon causes the increase of the effective dielectric constant, while maintaining the excellent interfacial properties. The hysteresis window in C-V curves and the midgap interface state density( $D_{itm}$) of Hf $O_2$/HfS $i_{x}$/ $O_{y}$ thin films less than 10 mV and ~3$\times$10$^{11}$ c $m^{-2}$ -eV without post-metallization annealing, respectively. The leakage current was also low (1$\times$10-s A/c $m^2$ at $V_{g}$ = +2 V). It is believed that these excellent results were obtained due to existence of the amorphous HfS $i_{x}$/ $O_{y}$ buffer layer. We also investigated the charge trapping characteristics using Fowler-Nordheim electron injection: We found that the degradation of Hf $O_2$/HfS $i_{x}$/ $O_{y}$ gate oxides is more severe when electrons were injected from the gate electrode.e electrode.e.e electrode.e.

  • PDF

Enhanced Device Performance of IZO-based oxide-TFTs with Co-sputtered $HfO_2-Al_2O_3$ Gate Dielectrics (Co-sputtered $HfO_2-Al_2O_3$을 게이트 절연막으로 적용한 IZO 기반 Oxide-TFT 소자의 성능 향상)

  • Son, Hee-Geon;Yang, Jung-Il;Cho, Dong-Kyu;Woo, Sang-Hyun;Lee, Dong-Hee;Yi, Moon-Suk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.6
    • /
    • pp.1-6
    • /
    • 2011
  • A transparent oxide thin film transistors (Transparent Oxide-TFT) have been fabricated by RF magnetron sputtering at room temperature using amorphous indium zinc oxide (a-IZO) as both of active channel and source/drain, gate electrodes and co-sputtered $HfO_2-Al_2O_3$ (HfAIO) as gate dielectric. In spite of its high dielectric constant > 20), $HfO_2$ has some drawbacks including high leakage current and rough surface morphologies originated from small energy band gap (5.31eV) and microcrystalline structure. In this work, the incorporation of $Al_2O_3$ into $HfO_2$ was obtained by co-sputtering of $HfO_2$ and $Al_2O_3$ without any intentional substrate heating and its structural and electrical properties were investigated by x-ray diffraction (XRD), atomic force microscopy (AFM) and spectroscopic ellipsometer (SE) analyses. The XRD studies confirmed that the microcrystalline structures of $HfO_2$ were transformed to amorphous structures of HfAIO. By AFM analysis, HfAIO films (0.490nm) were considerably smoother than $HfO_2$ films (2.979nm) due to their amorphous structure. The energy band gap ($E_g$) deduced by spectroscopic ellipsometer was increased from 5.17eV ($HfO_2$) to 5.42eV (HfAIO). The electrical performances of TFTs which are made of well-controlled active/electrode IZO materials and co-sputtered HfAIO dielectric material, exhibited a field effect mobility of more than $10cm^2/V{\cdot}s$, a threshold voltage of ~2 V, an $I_{on/off}$ ratio of > $10^5$, and a max on-current of > 2 mA.

Electrical and Material Characteristics of HfO2 Film in HfO2/Hf/Si MOS Structure (HfO2/Hf/Si MOS 구조에서 나타나는 HfO2 박막의 물성 및 전기적 특성)

  • Bae, Kun-Ho;Do, Seung-Woo;Lee, Jae-Sung;Lee, Yong-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.101-106
    • /
    • 2009
  • In this paper, Thin films of $HfO_2$/Hf were deposited on p-type wafer by Atomic Layer Deposition (ALD). We studied the electrical and material characteristics of $HfO_2$/Hf/Si MOS capacitor depending on thickness of Hf metal layer. $HfO_2$ films were deposited using TEMAH and $O_3$ at $350^{\circ}C$. Samples were then annealed using furnace heating to $500^{\circ}C$. Round-type MOS capacitors have been fabricated on Si substrates with $2000\;{\AA}$-thick Pt top electrodes. The composition rate of the dielectric material was analyzed using TEM (Transmission Electron Microscopy), XRD (X-ray Diffraction) and XPS (X-ray Photoelectron Spectroscopy). Also the capacitance-voltage (C-V), conductance-voltage (G-V), and current-voltage (I-V) characteristics were measured. We calculated the density of oxide trap charges and interface trap charges in our MOS device. At the interface between $HfO_2$ and Si, both Hf-Si and Hf-Si-O bonds were observed, instead of Si-O bond. The sandwiched Hf metal layer suppressed the growing of $SiO_x$ layer so that $HfSi_xO_y$ layer was achieved. And finally, the generation of both oxide trap charge and interface trap charge in $HfO_2$ film was reduced effectively by using Hf metal layer.

NH3 분위기 후열처리에 따른 SiC 기판 위에 성장된 HfO2 박막의 계면 변화 연구

  • Gwon, Se-Ra;Park, Hyeon-U;Choe, Min-Jun;Jeong, Gwon-Beom
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.299-299
    • /
    • 2016
  • SiC는 넓은 에너지갭 (Eg=~3.4 eV)을 갖는 반도체로써, 고전압, 고온에서 동작이 가능하여 기존의 Si기반의 파워디바이스를 대체하기 위한 물질로 많은 연구가 이루어지고 있다. 파워 디바이스의 성능 향상을 위해서는 기판과 절연체 사이의 계면에 생성되는 계면 결함을 감소시켜야 한다. 따라서 본 연구에서는 SiC 기판에 high-k 물질인 HfO2를 증착하여 HfO2/SiC 계면에 유도된 결함을 분석하고 이를 감소시킬 수 있는 방법에 대한 연구를 수행하였다. HfO2 박막은 atomic-layer-deposition (ALD) 방법을 이용하여 SiC 기판 위에 $200^{\circ}C$에서 증착하였다. HfO2 박막 증착 후 NH3 분위기에서 rapid thermal annealing 방법을 이용하여 $600^{\circ}C$에서 1분 동안 열처리 진행하였다. Current-voltage (I-V) 측정을 통해 열처리 전 HfO2/SiC의 절연파괴 전압이 약 8.3 V 임을 확인하였다. NH3 열처리 후 HfO2/SiC의 절연파괴 전압이 10 V로 증가하였으며 누설 전류가 크게 감소하는 것을 확인하였다. 또한 capacitance-voltage (C-V) 측정을 통해 열처리 후 flat band voltage가 negative 방향에서 positive 방향으로 이동함을 확인하였고, 이를 통해 NH3 열처리 방법이 HfO2/SiC 계면에 존재하는 결함을 감소시킬 수 있음을 확인하였다. 전자 구조상의 conduction band edge에 존재하는 결함 준위를 분석하기 위해 x-ray absorption spectroscopy (XAS) 분석을 실시하였고, 열처리 전 HfO2/SiC 계면에 많은 결함 준위가 존재함을 확인하였으며, x-ray photoelectron spectroscopy (XPS) 분석을 통해 이 결함 준위가 oxygen deficiency state과 관련됨을 알 수 있었다. NH3 열처리 후 결과와 비교해보면, oxygen deficiency state가 감소함을 확인하였으며 이로 인해 conduction band edge에 존재하는 결함 준위가 감소함을 알 수 있었다. 따라서, NH3 열처리 방법을 이용하여 HfO2/SiC 계면에 존재하는 결함을 감소시킬 수 있으며, HfO2/SiC의 물리적, 전기적 특성을 향상시킬 수 있다는 결과를 도출하였다.

  • PDF

Investigation of $WSi_2$ Gate for the Integration With $HfO_3$gate oxide for MOS Devices (MOS 소자를 위한 $HfO_3$게이트 절연체와 $WSi_2$게이트의 집적화 연구)

  • 노관종;양성우;강혁수;노용한
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.832-835
    • /
    • 2001
  • We report the structural and electrical properties of hafnium oxide (HfO$_2$) films with tungsten silicide (WSi$_2$) metal gate. In this study, HfO$_2$thin films were fabricated by oxidation of sputtered Hf metal films on Si, and WSi$_2$was deposited directly on HfO$_2$by LPCVD. The hysteresis windows in C-V curves of the WSi$_2$HfO$_2$/Si MOS capacitors were negligible (<20 mV), and had no dependence on frequency from 10 kHz to 1 MHz and bias ramp rate from 10 mV to 1 V. In addition, leakage current was very low in the range of 10$^{-9}$ ~10$^{-10}$ A to ~ 1 V, which was due to the formation of interfacial hafnium silicate layer between HfO$_2$and Si. After PMA (post metallization annealing) of the WSi$_2$/HfO$_2$/Si MOS capacitors at 500 $^{\circ}C$ EOT (equivalent oxide thickness) was reduced from 26 to 22 $\AA$ and the leakage current was reduced by approximately one order as compared to that measured before annealing. These results indicate that the effect of fluorine diffusion is negligible and annealing minimizes the etching damage.

  • PDF

Influence of Co-sputtered HfO2-Si Gate Dielectric in IZO-based thin Film Transistors (HfO2-Si의 조성비에 따른 HfSiOx의 IZO 기반 산화물 반도체에 대한 연구)

  • Cho, Dong Kyu;Yi, Moonsuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.98-103
    • /
    • 2013
  • In this work, we investigated the enhanced performance of IZO-based TFTs with $HfSiO_x$ gate insulators. Four types of $HfSiO_x$ gate insulators using different diposition powers were deposited by co-sputtering $HfO_2$ and Si target. To simplify the processing sequences, all of the layers composing of TFTs were deposited by rf-magnetron sputtering method using patterned shadow-masks without any intentional heating of substrate and subsequent thermal annealing. The four different $HfSiO_x$ structural properties were investigated x-ray diffraction(XRD), atomic force microscopy(AFM) and also analyzed the electrical characteristics. There were some noticeable differences depending on the composition of the $HfO_2$ and Si combination. The TFT based on $HfSiO_x$ gate insulator with $HfO_2$(100W)-Si(100W) showed the best results with a field effect mobility of 2.0[$cm^2/V{\cdot}s$], a threshold voltage of -0.5[V], an on/off ratio of 5.89E+05 and RMS of 0.26[nm]. This show that the composition of the $HfO_2$ and Si is an important factor in an $HfSiO_x$ insulator. In addition, the effective bonding of $HfO_2$ and Si reduced the defects in the insulator bulk and also improved the interface quality between the channel and the gate insulator.

Electrical Characterization of $HfO_2$/Hf/Si(sub) Films Grown by Atomic Layer Deposition (ALD방법으로 성장된 $HfO_2$/Hf/Si 박막의 전기적 특성)

  • Lee, Dae-Gab;Do, Seung-Woo;Lee, Jae-Sung;Lee, Yong-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.565-566
    • /
    • 2006
  • In this work, We study electrical characterization of $HfO_2$/Hf/Si films grown by Atomic Layer Deposition(ALD). Through AES(Auger Electron Spectroscopy), capacitance-voltage(C-V) and current-voltage(I-V) analysis, the role of Hf layer for the better $HfO_2$/Si interface property was investigated. We found that Hf metal layer in our structure effectively suppressed the generation of interfacial $SiO_2$ layer between $HfO_2$ film and silicon substrate.

  • PDF