• Title/Summary/Keyword: HEP

Search Result 1,409, Processing Time 0.022 seconds

Enterocarpam-III Induces Human Liver and Breast Cancer Cell Apoptosis via Mitochondrial and Caspase-9 Activation

  • Banjerdpongchai, Ratana;Wudtiwai, Benjawan;Pompimon, Wilart
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1833-1837
    • /
    • 2015
  • An aristolactam-type alkaloid, isolated from Orophea enterocarpa, is enterocarpam-III (10-amino-2,3,4,6-tetramethoxyphenanthrene-1-carboxylic acid lactam). It is cytotoxic to various human and murine cancer cell lines; however, the molecular mechanisms remain unclear. The aims of this study were to investigate cytotoxic effects on and mechanism (s) of human cancer cell death in human hepatocellular carcinoma HepG2 and human invasive breast cancer MDA-MB-231 cells compared to normal murine fibroblast NIH3T3 cells. Cell viability was determined by MTT assay to determine $IC_{10}$, $IC_{20}$ and $IC_{50}$ levels, reactive oxygen species (ROS) production with 2',7'-dichlorohydrofluorescein diacetate and the caspase-3, -8 and -9 activities using specific chromogenic (p-nitroaniline) tetrapeptide substrates, viz., DEVD-NA, IETD-NA and LEHD-NA and employing a microplate reader. Mitochondrial transmembrane potential (MTP) was measured by staining with 3, 3'-dihexyloxacarbocyanine iodide ($DiOC_6$) and using flow cytometry. The compound was cytotoxic to HepG2 and MDA-MB-231 cells with the $IC_{50}$ levels of $26.0{\pm}4.45$ and $51.3{\pm}2.05{\mu}M$, respectively. For murine normal fibroblast NIH3T3 cells, the $IC_{50}$ concentration was $81.3{\pm}10.1{\mu}M$. ROS production was reduced in a dose-response manner in HepG2 cells. The caspase-9 and -3 activities increased in a concentration-dependent manner, whereas caspase-8 activity did not alter, indicating the intrinsic pathway activation. Enterocarpam-III decreased the mitochondrial transmembrane potential (MTP) dose-dependently in HepG2 cells, suggesting that the compound induced HepG2 cell apoptosis via the mitochondrial pathway. In conclusion, enterocarpam-III inhibited HepG2 and MDA-MB-231 cell proliferation and induced human HepG2 cells to undergo apoptosis via the intrinsic (mitochondrial) pathway and induction of caspase-9 activity.

Analytical Research to Determine the effects of the Components of ONGABO on the Viability of HepG2 Cancer Cells by Using the Sovereign, Minister, Assistant and Courier Principle (君臣佐使論)

  • Shin, Jeong-Hun;Jun, Seung-Lyul;Hwang, Sung-Yeoun;Ahn, Seong-Hun
    • Journal of Pharmacopuncture
    • /
    • v.15 no.4
    • /
    • pp.42-51
    • /
    • 2012
  • Objectives: This study used the basic principle of Oriental medicine, the sovereign, minister, assistant and courier principle (君臣佐使論) to investigate the effects of the component of ONGABO, which is composed of Ginseng Radix (Red Ginseng), Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen and Curcumae tuber on the viability of HepG2 cells. Methods: Single and mixed extracts of the component of ONGABO were prepared by lypohilizing powder of Red Ginseng (6-year root from Kanghwa), Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen, Curcumae Tuber (from Omniherb Co., Ltd., Korea) at the laboratory of herbal medicine in Woosuk University and were eluted after being macerated with 100% ethanol for three days. The cell viability of HepG2 was determined by using an absorptiometric analysis with PrestoBlue (Invitrogen) reagent after the plate had been incubated for 48 hours. All of the experiments were repeated three times to obtain the average value and standard deviation. The statistical analysis was done and the correlation factor was obtained by using Microsoft Office Excel 2007 and Origin 6.0 software. Results: Although Ginseng Radix (Red Ginseng) and Schisandrae Fructus did not enhance the viability of HepG2 cells, they were shown to provide protection of those cells. On the other hand, Angelica Gigantis Radix decreased the viability of HepG2 cells significantly, Cuscuta Semen and Curcumae Tuber had a small or no effect on the viability of HepG2 cells. Conclusions: In the sovereign, minister, assistant and courier principle (君臣佐使論), Ginseng Radix (Red Ginseng) corresponds to the sovereign component because it provides cell protection effects, Angelica Gigantis Radix corresponds to minister medicinal because it kills cells, Schisandrae Fructus corresponds to the assistant medicinal to help red ginseng having cell protect effects. Cuscuta Semen and Curcumae Tuber correspond to the courier medicinal having no effect in cell viability in HepG2. We hope this study provides motivation for advanced research on the sovereign, minister, assistant and courier principle.

Cytotoxic and Apoptotic-inducing Effects of Purple Rice Extracts and Chemotherapeutic Drugs on Human Cancer Cell Lines

  • Banjerdpongchai, Ratana;Wudtiwai, Benjawan;Sringarm, Korawan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6541-6548
    • /
    • 2013
  • Pigmented rice is mainly black, red, and dark purple, and contains a variety of flavones, tannin, polyphenols, sterols, tocopherols, ${\gamma}$-oryzanols, amino acids, and essential oils. The present study evaluated the cytotoxic effects of purple rice extracts (PREs) combined with chemotherapeutic drugs on human cancer cells and mechanisms of cell death. Methanolic (MeOH) and dichloromethane (DCM) extracts of three cultivars of purple rice in Thailand: Doisaket (DSK), Nan and Payao (PYO), were tested and compared with white rice (KK6). Cytotoxicity was determined by 3-(4, 5-dimethyl)-2, 5-diphenyltetrazolium bromide (MTT) assay in human hepatocellular carcinoma HepG2, prostate cancer LNCaP and murine normal fibroblast NIH3T3 cells. MeOH-PYO-PRE was the most cytotoxic and inhibited HepG2 cell growth more than that of LNCaP cells but was not toxic to NIH3T3 cells. When PREs were combined with paclitaxel or vinblastine, they showed additive cytotoxic effects on HepG2 and LNCaP cells, except for MeOH-PYO-PRE which showed synergistic effects on HepG2 cells when combined with vinblastine. MeOH-PYO-PRE plus vinblastine induced HepG2 cell apoptosis with loss of mitochondrial transmembrane potential (MTP) but no ROS production. MeOH-PYO-PRE-treated HepG2 cells underwent apoptosis via caspase-9 and-3 activation. The level of ${\gamma}$-oryzanol was highest in DCM-PYO-PRE (44.17 mg/g) whereas anthocyanin content was high in MeOH-PYO-PRE (5.80 mg/g). In conclusion, methanolic Payao purple rice extract was mostly toxic to human HepG2 cells and synergistically enhanced the cytotoxicity of vinblastine. Human HepG2 cell apoptosis induced by MeOH-PYO-PRE and vinblastine was mediated through a mitochondrial pathway.

Antioxidant and Anti-dyslipidemic Effect of Artemisiae iwayomogii Herba, Curcumae longae Radix, and Plantaginis Semen Complex Extract(ACP) on HepG2 Cells (HepG2 cell에서 한인진, 울금, 차전자 추출물(ACP)의 항산화 및 항이상지질혈증 효과)

  • Jung, Eunsun;Cho, Hyun Kyoung;Kim, Yoon Sik;Yoo, Ho Ryong;Seol, In Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.32 no.1
    • /
    • pp.13-23
    • /
    • 2018
  • This study was performed to investigate the antioxidant and antidyslipidemic effects of Artemisiae iwayomogii Herba, Curcumae longae Radix and Plantaginis Semen complex extract(ACP) on HepG2 cells. We measured total polyphenols, total flavonoids, radical scavenging activity, and ABTS radical scavenging activity of ACP to evaluate its antioxidant activity. HepG2 cells were treated with ACP. Then, we evaluated ROS production; intracellular GSH content; GPx, GR, SOD, and catalase activities; free fatty acids and MDA levels; and mRNA expression levels of ACAT1 and HMG-CoA reductase. Results: ACP contains polyphenols and flavonoids and increased the DPPH and ABTS radical scavenging activities in HepG2 cells in a dose dependent manner. Also, ACP significantly reduced ROS production in HepG2 cells compared to the control group and significantly increased the GSH content, and elevated the enzyme activities of GPx, GR, and catalase in HepG2 cells compared to the control group. In addition, ACP reduced the mRNA expression of ACAT1 and HMG-CoA reductase in HepG2 cells compared to that in the control group. Conclusion: These results suggest that ACP has an antioxidant effect and may suppress the expression of dyslipidemia - associated genes and thus may be useful for the improvement of dyslipidemia.

Induction of Apoptosis and Its Mechanism by Siegesbeckia Glabrescens in HepG2 cells (간암 세포주에서의 희렴의 Apoptosis 유도와 기전)

  • Kim, Yoon-Tae;Lee, Heon-Jae;Kim, Gil-Whon;Shin, Heung-Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.640-646
    • /
    • 2005
  • This study was performed for the investigation of anticancer effects of Siegesbeckia glabrescens(SG) on HepG2 cells, a human hepatoma cell line. In the previous study, we examined the involvement of nitric oxide (NO) on anti-proliferative and apoptotic efficacy of SG in vascular smooth muscle cells. The possible mechanism of the apoptotic effects of SG was investigated in HepG2 cells. SG showed potent cytotoxic activity in HepG2 but not chang cells, liver normal cells. SG treatment caused morphological change such as cell shrinkage, nuclei condensation and cell blebbing in HepG2 cells. SG also increased the nitrite production of HepG2 cells in a dose-dependent manner. Furthermore, L-NNA treatment inhibited the anti-proliferative effect of SG. From RT-PCR, SG decreased Bcl-2 but no affected on Bax. Western blot for procaspase-3 and COX-2 showed that degradation of procaspase-3 protein level or inhibition of COX-2 protein expression by SG treatment. In addition, the apoptotic effect of SG was also demonstrated by DNA laddering. In conclusion, SG-induced HepG2 cells death can occur via apoptosis which was dose-dependent, and associated with apoptosis-related Bcl-2/Bax gene expressions, COX-2 inhibition, caspase-3 activation and NO pathway. These results suggest that SG is potentially useful as a chemotherapeutic/chemopreventive agent in hepatocellular carcinoma.

Antitumor Activity of Bupleuri Radix and Artemisiae capillaris Herba and Synergistic Effect with Anticancer Drugs (시호(柴胡), 인진(茵蔯)의 간암세포(肝癌細胞)에 대한 항암활성(抗癌活性) 및 항암제(抗癌劑)와의 상승작용(相乘作用))

  • Son, Gap-Ho;Kim, Seong-Hun
    • The Journal of Korean Medicine
    • /
    • v.16 no.2 s.30
    • /
    • pp.414-432
    • /
    • 1995
  • In order to prove the antitumer effect of Bupleuri Radix(BR) and Artemisiae capillaris Herba(ACH) experimently, studies were done. The antitumer effect against hepatic cancer such as Hep G2, PLC & Hep 313, and also th synergastic action was evaulatcd in the combined treatment with anticancer drugs using chiefly for liver cancer, such as mitomycin(MMC), cisplatin(CPT) and 5-fluorouracil(5-FU). The results were obtained as follows: 1. IC50 against Hep G2, Hep 3B and PLC was 15.5ug/ml, 25.4ug/ml, 31.25ug/ml in Mitomycin (MMC), 92.5ug/ml, 50.2ug/ml, 62.5ug/ml in cisplatin(CPT) and 125ug/ml in 5-fluouracil(5- FU) respectively. 2. The antitumor effect was shown in the all concentrations of ACH, BR and below 55%-Cytotoxic effect against Hep G2 as compared with the date of control was shown in the concentration of $10^{-4}g/ml$ above of BR but not in ACH and also BR and ACHI revealed the synergistic effect with MMC. 3. The antitumor effect was shown in the concentration of $10^{-5}g/ml$ above of ACH, BR and below 55%-Cytotoxic effect against Hep 3B as compared with the data of control was shown in the concentration of $10^{-5}g/ml$ above of ACH but not in BH and also BR & ACH revealed the svnergistic effect with MMC. 4. The antitumor effect was shown in the all concentrations of ACH, BR and 55%-Cytotoxic effect against PLC as compared with the data of control was shown in the concentration of $10^{-5}g/ml$ above of ACH but not in BR and also ACH revealed the synergistic effect with MMC. From the above results it was concluded that Artemisiae capillaris had antitumor effect against PLC, Hep 3B, Bupleuri Radix against Hep G2 and also MMC showed the most synergistic effect in the anticancer drugs.

  • PDF

Inhibition of gene associated with Dyslipidemia and Antioxidative Effect of Artemisia iwayomogi, Curcumae Radix and Raphani Semen(ACR) on HepG2 cell model (HepG2 cell을 이용한 한인진, 울금, 나복자 복합물(ACR)의 이상지질혈증 관련 유전자 발현 억제 및 항산화 효능 평가)

  • Cha, Jiyun;Yoo, Ho-ryong;Kim, Yoon-sik;Seol, In-chan;Jo, Hyun-kyung
    • The Journal of Korean Medicine
    • /
    • v.38 no.3
    • /
    • pp.43-58
    • /
    • 2017
  • Objectives: We performed this study to evaluate the antioxidative and hypolipidemic effect of Artemisia iwayomogi (韓茵蔯), Curcuma longa L. (鬱金) and Raphanus sativus L. (蘿?子) (ACR). Method: We enriched Artemisiae Capillaris, Curcumae Longae and Raphani Semen compound with alcohol. ACR extract is treated to HepG2 cell. Cell groups are devided into 3 groups: normal, control and ACR treated group. We measured polyphenol, flavonoids, DPPH and ABTS radical scavenging activity, ROS, glutathione, GSH peroxidase, GSH reductase, SOD, catalase, free fatty acid, lipid peroxidation and suppression of ACAT1 and HMG-CoA reductase expression on mRNA level. Results: 1. ACR contained polyphenol and flavonoids and increased GSH significantly in HepG2 cell. 2. ACR increased GPx, GR, and catalase activity significantly in HepG2 cell. 3. ACR increased DPPH and ABTS radical scavenging activity significantly in HepG2 cell and decreased ROS. 4. ACR decreased free fatty acid and MDA significantly in HepG2 cell. 5. ACR suppressed ACAT1 and HMG-CoA reductase expression on mRNA level in HepG2 cell. Conclusion: This study suggests that ACR has antioxidative and hypolipidemic effect and might be effective in prevention and treatment of dyslipidemia.

Cooperative stimulation of cisplatin-mediated apoptosis by hepatitis B virus X Protein and hepatitis C virus core Protein (B형 간염 바이러스 X 단백질과 C형 간염 바이러스의 코어 단백질에 의한 cisplatin-매개성 세포 예정사의 협조적 촉진)

  • Kwun, Hyun-Jin;Jang, Kyung-Lib
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.766-771
    • /
    • 2007
  • The co-infection with hepatitis B virus (HBV) and hepatitis C Virus (HCV) is associated with a more severe liver disease and increased frequency in the development of hepatocellular carcinoma com-pared to those with single infection. Here, we demonstrated that HBV X protein (HBx) and HCV Core cooperatively up-regulated the level of p53 in human hepatoma HepG2 cells. The elevated p53 subsequently stimulated the expression of proapoptotic Bax whereas it repressed the expression of antiapoptotic Bcl2. These effects, however, were not observed in p53-negative Hep3B cells. Consistently to their cooperative regulation of apoptotic effectors, HBx and HCV Core additively stimulated cisplatin-mediated apoptotic cell death of HepG2 but not of Hep3B cells. These results may help to explain the development of a more severe liver disease in patients co-infection with HBV and HCV as well as some contradictory results on the roles of HBx and Core in apoptosis.

Induction of Apoptosis by Aloe Vera Extract in Human Hepatocellular Carcinoma HepG2 Cells (알로에 베라 추출물에 의한 사람 간암 세포주 HepG2의 Apoptosis 유도)

  • Kim, Il-Rang;Kwon, Hoon-Jeong
    • Toxicological Research
    • /
    • v.22 no.4
    • /
    • pp.329-332
    • /
    • 2006
  • Ethanolic extract of Aloe vera (Aloe barbadensis Miller) was examined for the cellular toxicity on HepG2 human hepatocellular carcinoma cells. Treatment with Aloe vera extract resulted in DNA fragmentation but not LDH release, suggesting an apoptosis instead of necrosis. Aloe vera induced cytotoxicity was mediated by decrease in ATP levels, whereas GSH depletion, increase in intracellular $Ca^{2+}$, or activation of caspase-3/7 could not be observed with statistical significance. No activation of caspase-3/7 suggests the possibility of caspase-independent apoptosis. Taken together, our results show that Aloe vera extract induce HepG2 apoptosis by ATP depletion-related impairment of mitochondria, which is caspase-independent.

Human CYP1A2 Promoter Fused-Luciferase Gene Constructs Hardly Respond to Polycyclic Hydrocarbons in Transient Transfection Study in HepG2 Cells

  • Chung, Injae
    • Toxicological Research
    • /
    • v.16 no.2
    • /
    • pp.95-100
    • /
    • 2000
  • In previous study, both constitutive expression and 3-methylcholanthrene (3MC)-mediated elevation of CYP1A2 mRNA were demonstrated in human hepatoma HepG2 cells by reverse transcription-polymerase chain reaction (RT-PCR), suggesting that HepG2 cells would be appropriate for the study of human CYP1A2 regulation(Chung and Bresnick, 1994). Further studies were conducted to determine the basis of this induction phenomenon that is observed in HepG2 cells. Since CYP1A1 gene, another polycyclic hydrocarbon(PH)-inducible gene, is regulated by PHs through their interactions via receptors with cis-elements, the 5'-flanking region of human CYP 1A2 gene was analyzed to search such responsive elements. The promoter activity of various lengths of CYP1A2 gene sequence (-3203/+58bp) was measured in transiently-transfected HepG2 cells by fusion constructs containing the CAT, hGH or luciferase genes as a reporter. This region of the CYP1A2 gene, although containing a XRE, was only weakly responsive (less than 2 fold induction) to 10 nM of TCDD or 1 $\mu$M 3 MC treatment. This small enhancement of promoter activity is inconsistent with the previous observation, i.e., 12 to 14 fold-enhanced CYP1A2 mRNA from 1 $\mu$M 3 MC treated HepG2 cells, suggesting that additional mechanisms would exist for PH-mediated induction of CYP1A2 in these cells.

  • PDF