• 제목/요약/키워드: HDAC enzyme

검색결과 12건 처리시간 0.021초

Synthesis of new apicidin derivatives as Histone deacetylase(HDAC) inhibitors

  • H.O. Kang;C.H. Jin;J.W. Han;Lee, H.W.;Lee, Y.W.;Park, H.J.;O.P. Zee;Y.H. Jung
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2001년도 추계학술대회 및 정기총회
    • /
    • pp.110-110
    • /
    • 2001
  • Histone deacetylase(HDAC), a neuclear enzyme that regulates gene trascription and the assembly of newly synthesized chromatin, has received much attention in recent literature. The explosion of activity in this field has yielded the cloning of a mammalian gene which encodes a complementary histone acetyl trasferases. Several cyclic tetrapeptide inhibitors of HDAC has been reported to affect the hyperacetylation of mammalian and plant histones. Apicidin, a natural product HDAC inhibitor recently isolated at Merck Research Laboratories, induces therapeutic applications as a broad spectrum antiprotozoal agent to multi-drug resistant malaria and a potential antitumor agnet. The biological activity of apicidin appears to be attributable to inhibition of apicocomplexan HDAC at low nanomolar concentrations.

  • PDF

Histone Deacetylase in Carcinogenesis and Its Inhibitors as Anti-cancer Agents

  • Kim, Dong-Hoon;Kim, Min-Jung;Kwon, Ho-Jeong
    • BMB Reports
    • /
    • 제36권1호
    • /
    • pp.110-119
    • /
    • 2003
  • The acetylation state of histone is reversibly regulated by histone acetyltransferase (HAT) and deacetylase (HDAC). An imbalance of this reaction leads to an aberrant behavior of the cells in morphology, cell cycle, differentiation, and carcinogenesis. Recently, these key enzymes in the gene expression were cloned. They revealed a broad use of this modification, not only in histone, but also other proteins that involved transcription, nuclear transport, and cytoskeleton. These results suggest that HAT/HDAC takes charge of multiple-functions in the cell, not just the gene expression. HDAC is especially known to play an important role in carcinogenesis. The enzyme has been considered a target molecule for cancer therapy. The inhibition of HDAC activity by a specific inhibitor induces growth arrest, differentiation, and apoptosis of transformed or several cancer cells. Some of these inhibitors are in a clinical trial at phase I or phase II. The discovery and development of specific HDAC inhibitors are helpful for cancer therapy, and decipher the molecular mode of action for HDAC.

Anti-Cancer Effect of IN-2001 in T47D Human Breast Cancer

  • Joung, Ki-Eun;Min, Kyung-Nan;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Biomolecules & Therapeutics
    • /
    • 제20권1호
    • /
    • pp.81-88
    • /
    • 2012
  • Histone deacetylases (HDACs) are enzymes involved in the remodelling of chromatin, and have a key role in the epigenetic regulation of gene expression. Histone deacetylase (HDAC) inhibitors are emerging as an exciting new class of potential anti-cancer agents. In recent years, a number of structurally diverse HDAC inhibitors have been identifi ed and these HDAC inhibitors induce growth arrest, differentiation and/or apoptosis of cancer cells in vitro and in vivo. However, the underlying molecular mechanisms remain unclear. This study aimed at investigating the anti-tumor activity of various HDAC inhibitors, IN-2001, using T47D human breast cancer cells. Moreover, the possible mechanism by which HDAC inhibitors exhibit anti-tumor activity was also explored. In estrogen receptor positive T47D cells, IN-2001, HDAC inhibitor showed anti-proliferative effects in dose-and time-dependent manner. In T47D human breast cancer cells showed anti-tumor activity of IN-2001 and the growth inhibitory effects of IN-2001 were related to the cell cycle arrest and induction of apoptosis. Flow cytometry studies revealed that IN-2001 showed accumulation of cells at $G_2$/M phase. At the same time, IN-2001 treatment time-dependently increased sub-$G_1$ population, representing apoptotic cells. IN-2001-mediated cell cycle arrest was associated with induction of cdk inhibitor expression. In T47D cells, IN-2001 as well as other HDAC inhibitors treatment significantly increased $p21^{WAF1}$ and $p27^{KIP1}$ expression. In addition, thymidylate synthase, an essential enzyme for DNA replication and repair, was down-regulated by IN-2001 and other HDAC inhibitors in the T47D human breast cancer cells. In summary, IN-2001 with a higher potency than other HDAC inhibitors induced growth inhibition, cell cycle arrest, and eventual apoptosis in human breast cancer possibly through modulation of cell cycle and apoptosis regulatory proteins, such as cdk inhibitors, cyclins, and thymidylate synthase.

Evidence of an Epigenetic Modification in Cell-cycle Arrest Caused by the Use of Ultra-highly-diluted Gonolobus Condurango Extract

  • Bishayee, Kausik;Sikdar, Sourav;Khuda-Bukhsh, Anisur Rahman
    • 대한약침학회지
    • /
    • 제16권4호
    • /
    • pp.7-13
    • /
    • 2013
  • Objectives: Whether the ultra-highly-diluted remedies used in homeopathy can effectively bring about modulations of gene expressions through acetylation/deacetylation of histones has not been explored. Therefore, in this study, we pointedly checked if the homeopathically-diluted anti-cancer remedy Condurango 30C (ethanolic extract of Gonolobus condurango diluted $10^{-60}$ times) was capable of arresting the cell cycles in cervical cancer cells HeLa by triggering an epigenetic modification through modulation of the activity of the key enzyme histone deacetylase 2 vis-a-vis the succussed alcohol (placebo) control. Methods: We checked the activity of different signal proteins (like $p21^{WAF}$, p53, Akt, STAT3) related to deacetylation, cell growth and differentiation by western blotting and analyzed cell-cycle arrest, if any, by fluorescence activated cell sorting. After viability assays had been performed with Condurango 30C and with a placebo, the activities of histone de-acetylase (HDAC) enzymes 1 and 2 were measured colorimetrically. Results: While Condurango 30C induced cytotoxicity in HeLa cells in vitro and reduced HDAC2 activity quite strikingly, it apparently did not alter the HDAC1 enzyme; the placebo had no or negligible cytotoxicity against HeLa cells and could not alter either the HDAC 1 or 2 activity. Data on $p21^{WAF}$, p53, Akt, and STAT3 activities and a cell-cycle analysis revealed a reduction in DNA synthesis and G1-phase cell-cycle arrest when Condurango 30C was used at a 2% dose. Conclusion: Condurango 30C appeared to trigger key epigenetic events of gene modulation in effectively combating cancer cells, which the placebo was unable to do.

A New Histone Deacetylase Inhibitor, MHY219, Inhibits the Migration of Human Prostate Cancer Cells via HDAC1

  • De, Umasankar;Kundu, Soma;Patra, Nabanita;Ahn, Mee Young;Ahn, Ji Hae;Son, Ji Yeon;Yoon, Jung Hyun;Moon, Hyung Ryoung;Lee, Byung Mu;Kim, Hyung Sik
    • Biomolecules & Therapeutics
    • /
    • 제23권5호
    • /
    • pp.434-441
    • /
    • 2015
  • Histone deacetylase (HDAC) inhibitors are considered novel agents for cancer chemotherapy. We previously investigated MHY219, a new HDAC inhibitor, and its potent anticancer activity in human prostate cancer cells. In the present study, we evaluated MHY219 molecular mechanisms involved in the regulation of prostate cancer cell migration. Similar to suberanilohydroxamic acid (SAHA), MHY219 inhibited HDAC1 enzyme activity in a dose-dependent manner. MHY219 cytotoxicity was higher in LNCaP ($IC_{50}=0.67{\mu}M$) than in DU145 cells ($IC_{50}=1.10{\mu}M$) and PC3 cells ($IC_{50}=5.60{\mu}M$) after 48 h of treatment. MHY219 significantly inhibited the HDAC1 protein levels in LNCaP and DU145 cells at high concentrations. However, inhibitory effects of MHY219 on HDAC proteins levels varied based on the cell type. MHY219 significantly inhibited LNCaP and DU145 cells migration by down-regulation of matrix metalloprotease-1 (MMP-1) and MMP-2 and induction of tissue inhibitor of metalloproteinases-1 (TIMP-1). These results suggest that MHY219 may potentially be used as an anticancer agent to block cancer cell migration through the repression of MMP-1 and MMP-2, which is related to the reduction of HDAC1.

Histone Deactylase Inhibitors as Novel Target for Cancer, Diabetes, and Inflammation

  • Singh, Parul;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제6권1호
    • /
    • pp.57-63
    • /
    • 2013
  • Histone deacetylase (HDACs) is an enzyme family that deacetylates histones and non-histones protein. Availability of crystal structure of HDAC8 has been a boosting factor to generate target based inhibitors. Hydroxamic class is the most studied one to generate potent inhibitors. HDAC class I and class II enzymes are emerging as a therapeutic target for cancer, diabetes, inflammation and other diseases. DNA methylation and histone modification are epigenetic mechanism, is important for the regulation of cellular functions. HDACs enzymes play essential role in gene transcription to regulate cell proliferation, migration and death. The aim of this article is to provide a comprehensive overview about structure and function of HDACs enzymes, histone deacetylase inhibitors (HDACi) and HDACs enzymes as a therapeutic target for cancer, inflammation and diabetes.

Selective Inhibition of Bicyclic Tetrapeptide Histone Deacetylase Inhibitor on HDAC4 and K562 Leukemia Cell

  • Li, Xiao-Hui;Huang, Mei-Ling;Wang, Shi-Miao;Wang, Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권12호
    • /
    • pp.7095-7100
    • /
    • 2013
  • Histone deacetylase (HDAC) inhibitors of cyclic peptide have been proved to be the most complex but the most stable and relative efficient inhibitors because of their large cap region. In this paper, a series of studies were carried out to evaluate the efficacy of synthetic bicyclic tetrapeptide inhibitors 1-5 containing hydroxamic acid referring molecular docking, anti-proliferation, morphology and apoptosis. Docking analysis, together with enzyme inhibitory results, verified the selective capability of inhibitor 4 to HDAC4, which might closely related to haematological tumorigenesis, with Phe227, Asp115, Pro32, His198 and Ser114 participating into hydrophobic interactions and Van der Waals force which was familiar with former study. Moreover, inhibitor 4 inhibited K562 cell line at the $IC_{50}$ value of 1.22 ${\mu}M$ which was 51-67 times more efficient than that for U937 and HL60 cell lines. Inhibitor 4 exhibited the cell cycle-arrested capability to leukemia at S phase or G2/M phase as well as apoptosis-induced ability in different degrees. Finally, we considered that bicyclic tetrapeptide inhibitors were promising inhibitors used in cancer treatment and inhibitor 4 could prevent K562 cell line well from proliferation, arrest cell cycle and induce K562 towards apoptosis to achieve the goals of reversing cancer cells which could become a potential leukemia therapeutic agent in the future.

Sodium butyrate inhibits high glucose-induced inflammation by controlling the acetylation of NF-κB p65 in human monocytes

  • Ha-Rin Moon;Jung-Mi Yun
    • Nutrition Research and Practice
    • /
    • 제17권1호
    • /
    • pp.164-173
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Hyperglycemia is a major cause of diabetes and diabetesrelated diseases. Sodium butyrate (NaB) is a short-chain fatty acid derivative that produces dietary fiber by anaerobic bacterial fermentation in the large intestine and occurs in foods, such as Parmesan cheese and butter. Butyrate has been shown to prevent obesity, improve insulin sensitivity, and ameliorate dyslipidemia in diet-induced obese mice. Therefore, this study examined the effects and mechanism of NaB on the secretion of inflammatory cytokines induced by high glucose (HG) in THP-1 cells. MATERIALS/METHODS: THP-1 cells were used as an in vitro model for HG-induced inflammation. The cells were cultured under normal glycemic or hyperglycemic conditions with or without NaB (0-25 μM). Western blotting and quantitative polymerase chain reaction were used to evaluate the protein and mRNA levels of nuclear factor-κB (NF-κB), interleukin-6, tumor necrosis factor-α, acetylated p65, acetyl CREB-binding protein/p300 (CBP/p300), and p300 using THP-1 cells. Histone acetyltransferase (HAT), histone deacetylase (HDAC), and pro-inflammatory cytokine secretion activity were analyzed using an enzyme-linked immunosorbent assay. RESULTS: HG significantly upregulated histone acetylation, acetylation levels of p300, NF-κB activation, and inflammatory cytokine release in THP-1 cells. Conversely, the NaB treatment reduced cytokine release and NF-κB activation in HG-treated cells. It also significantly reduced p65 acetylation, CBP/p300 HAT activity, and CBP/p300 gene expression. In addition, NaB decreased the interaction of p300 in acetylated NF-κB and TNF-α. CONCLUSIONS: These results suggest that NaB suppresses HG-induced inflammatory cytokine production through HAT/HDAC regulation in monocytes. NaB has the potential for preventing and treating diabetes and its related complications.

Cytochrome P-450 3A4 proximal promoter activity by histone deacetylase inhibitor in HepG2 cell.

  • Kim, Ja-Young;Ahn, Mee-Ryung;Sheen, Yhun-Yhong
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.88-88
    • /
    • 2003
  • Cytochrome P-450 3A4 (CYP3A4) is major enzyme in human liver, the role of this is detoxification and metabolizing more than 50% clinical drugs in use. Expression of CYP3A4 is transciptionally regulated by the Pregnenolone X receptor (PXR), of which human form is Steroid and Xenobiotics receptor (SXR). SXR is activated by wide range of endogenous and exogenous compounds, and then induces CYP3A4 gene expression. In the previous study, it has been known that proximal promoter (-864 to +64) does not response to chemical inducers such as pregnenolone 16a-carbonitrile (PCN), Rifampicin, Estrogen in terms of transcription of CYP 3A4 in cultured cells. Here, we developed luciferase reporter gene assay system to detect SXR-based CYP 3A4 transcriptional activity. We have used CYP3A4-Luc plasmid that contains proximal promoter of human CYP3A4 gene upstream of the luciferase gene. We did transient transfection of 3A4-luciferase gene and SXR. In the HepG2 cells transfected with CYP3A4-Luc, when rifampicin treatment was combined with histone deacetylase inhibitor (HDAC Inhibitor), such as Trichostatin A, Hc-toxin and IN 2001 of the luciferase activity was induced 10-20 fold over control.

  • PDF