• Title/Summary/Keyword: HBr

Search Result 119, Processing Time 0.027 seconds

Removal of Photoresist Mask after the Cl2/HBr/CF4 Reactive Ion Silicon Etching (Cl2/HBr/CF4 반응성 이온 실리콘 식각 후 감광막 마스크 제거)

  • Ha, Tae-Kyung;Woo, Jong-Chang;Kim, Gwan-Ha;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.353-357
    • /
    • 2010
  • Recently, silicon etching have received much attention for display industry, nano imprint technology, silicon photonics, and MEMS application. After the etching process, removing of etch mask and residue of sidewall is very important. The investigation of the etched mask removing was carried out by using the ashing, HF dipping and acid cleaning process. Experiment shows that oxygen component of reactive gas and photoresist react with silicon and converting them into the mask fence. It is very difficult to remove by using ashing or acid cleaning process because mask fence consisted of Si and O compounds. However, dilute HF dipping is very effective process for SiOx layer removing. Finally, we found optimized condition for etched mask removing.

$Ar/CH_4$ 혼합가스를 이용한 ITO 식각특성

  • 박준용;김현수;염근영
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.244-244
    • /
    • 1999
  • Liquid Crystal Displays(LCDs) 투명성 전도막으로 사용하는 Indium Tin Oxide (ITO)의 고밀도 식각특성을 조사하였다. 특히 ITO식각의 경우, pixel electrode 전극에서 사용되는 underlayer인 SiO2, Si3N4와의 최적의 선택비를 얻는데 중점을 두고 있다. 따라서 본 실험에서는 Inductively Coupled Plasma(ICP)를 이용하여 source power, gas combination, bias voltage, pressure 및 기판온도에 따른 ITO의 식각 특성과 이의 underlayer인 SiO2, Si3N4와의 선택비를 조사하였다. Ar과 CH4를 주된 식각가스로서 사용하였으며 첨가가스로는 O2와 HBr를 사용하였다. ITO의 식각특성을 이해하기 위하여 Quadruple Mass Spectrometry(QMS), Optical emission spectroscopy(OES) 이용하였으며, 식각된 sample의 잔류물을 조사하기 위하여 X-ray photoelectron spectroscopy(XPS)를 이용하여 분석하였다. Ar gas에 적정량의 CH4 혼합이 순수한 Ar 가스로 식각한 경우에 비하여 ITO와 SiO2, Si3N4의 선택비가 높았으며, 더 높은 식각 선택비를 얻기 위하여 Ar/CH 분위기에서 첨가가스 O2, HBr을 사용하였다. Source power 및 bias 증가에 따라 ITO의 식각률은 증가하나, underlayer와의 선택비는 감소함을 보였다. 본 실험에서 측정된 ITO의 high 식각률은 약 1500$\AA$/min이며, SiO2, Si3N4와의 high selectivity는 각각 7:1, 12:1로 나타났다. ITO의 etchrate 및 선택비는 source power, bias, pressure, CH 가스첨가에 의존하였지만 기판온도에는 큰 변화가 없음을 관찰하였다. 또한 적정량의 가스조합으로 식각된 시편의 잔류물을 줄일 수 있었다.

  • PDF

Polyvinyl Alcohol (PVA) Films Reinforced with Acid Hydrolyzed Cellulose

  • Lee, Sun-Young;Mohan, D.Jagan;Chun, Sang-Jin;Kang, In-Aeh;Lee, Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.341-346
    • /
    • 2008
  • Cellulose nanofibers from microfibril cellulose (MFC) was prepared by hydrobromic acid (HBr) treatment at different concentrations. Polyvinyl alcohol (PVA) composite films at various loading level of nanofibers were manufactured by a film casting method. The analysis of degree of polymerization (DP), crystallinity ($X_c$) and molecular weight ($M_w$) of cellulose after acid treatment was conducted. The mechanical and thermal properties of the cellulose nanofibers reinforced PVA films were characterized using tensile tests and thermogravimetric analysis (TGA). The DP and $M_w$ of MFC by HBr hydrolysis considerably decreased, but $X_c$ showed no significant change. After acid hydrolysis, the diameter of cellulose nanofibers was in the range of 100 to 200 nm. The thermal stability of the films was steadily improved with the increase of nanofiber loading. There was a significant increase in the tensile strength of PVA composite films with the increase in MFC loading. Finally, 5 wt.% nanofiber loading exhibited the highest tensile strength and thermal stability of PVA composite films.

Synethesis of bradykinin analogues by new reaction vessel (새로운 반응기구에 의한 bradykinin 유사물의 합성)

  • Choi, Cheong
    • Applied Biological Chemistry
    • /
    • v.34 no.4
    • /
    • pp.334-338
    • /
    • 1991
  • Synthesis of $(D-Phe^7\;-Leu^8)$ bradykinin and bradykinin by solid phase method using a new reaction vessel was carried out. Coupling was performed by dicyclohexylcarbodiimide. After cleavage with dried HBr the peptides were purified by high pressure liquied chromatography. Their purify was assayed by paper and thin layer chromatography, melting point and amino acid analysis. $(D-Phe^7\;-Leu^8)$ bradykinin and bradykinin were incubater in vitro endopeptidase $({\alpha}-chymotrysis)$ and exopeptidase(carboxypeptidase A, leucine aminopeptidase) in order to study the degradation pattern of peptides. $(D-Phe^7\;-Leu^8)$ bradykinin and bradykinin were rapidly degradated by ${\alpha}-chymotrypsin$ and carboxypeptidase A $(D-Phe^7\;-Leu^8)$ bradykinin and bradykinin coution$(D-Phe^7\;-Leu^8)$ bradykinin and bradykinin contain imino peptide bound from proline at N-terminal and therefore they were not attacted by leucine aminopeptidase.

  • PDF

The Dry Etching Characteristics in Contact Process (접촉공정에서 건식각 특성)

  • Lee, Chang-Weon;Kim, Jae-Jeong;Kim, Dae-Su;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.105-115
    • /
    • 1999
  • P-type의 단결정 실리콘 위에 $1000{\AA}$의 열산화막을 성장시킨후 $5500{\AA}$의 다결정 실리콘으로 증착된 시료를 가지고 $HBr/Cl_2/He-O_2$ 혼합기체로 식각할 때 시료의 식각 특성에 관한 $H_2-O_2$ 기체함량. RF 전력, 압력에 대한 영향을 XPS(X-ray photoelectron Spectroscopy)와 SEM(Scanning Electron Microscopy)으로 조사하였다. $HBr/Cl_2/He-O_2$ 혼합기체로 식각되는 동안 형성된 다결정 실리콘 식각속도는 $H_2-O_2$ 함량 증가에 따라 증가하였으며 식각잔유물은 RF 전력과 압력변화에 의해 영향은 받지 않는 것으로 나타났으며, 다결정 실리콘 측벽에서의 증착속도는 낮은 RF전력과 높은 압력에서 높게 나타났다. 다결정 실리콘 식각 잔유물의 결합에너지는 안정한 $SiO_2$인 열산화막의 경우보다 높으므로 식각 잔유물은 $SiO_{\chi}({\chi}>2)$의 화합결합을 가지는 산화물과 같은 잔유물로 생각된다.

A study of high density trench etching according to additive gas (첨가 가스에 따른 고밀도 트렌치 식각특성 연구)

  • Kim, Sang-Gi;Park, Kun-Sik;Koo, Jin-Gun;Park, Hoon-Soo;Woo, Jong-Chang;Park, Jong-Moon;Kim, Bo-Woo;Kang, Jin-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.245-246
    • /
    • 2008
  • 고밀도 트렌치 공정을 위해 HBr 가스를 주로하고 $CF_4$, $SiF_4$, $NF_3$, He-$O_2$ 등을 첨가 가스로 이용하여 트렌치 공정을 하였다. 트렌치 공정시 첨가가스 비에 따라 트렌치 형상이 다양하게 되었다. 이러한 형상은 트렌치 소자 제조시 트렌치 내부를 채울 경우 여러 가지 어려움이 발생되는데, 특히 트렌치 내부가 잘 채워지지 않고 void가 생길 경우 소자의 신뢰성에 많은 영향을 미칠 수 있다. 본 연구에서는 고밀도 트렌치를 병렬로 형성한 후 형성된 트렌치 내부를 잘 채울수 있는 고밀도 트렌치 공정을 연구하였다. 트렌치 형성시 HBr을 주가스로 하고, $NF_3$, $CF_4$, $SiF_4$ 를 비율을 각각 59:27:7:7로 했을 때 수십만 트렌치 형성 각도가 약 $89^{\circ}$로 매우 좋은 형상을 얻었다.

  • PDF

Reaction Dynamics of CH3 + HBr → CH4 + Br at 150-1000 K

  • Ree, Jongbaik;Kim, Yoo Hang;Shin, Hyung Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2473-2479
    • /
    • 2013
  • The kinetics of the radical-polar molecule reaction $CH_3+HBr{\rightarrow}CH_4+Br$ has been studied at temperatures between 150 and 1000 K using classical dynamics procedures. Potential energy surfaces constructed using analytical forms of inter- and intramolecular interaction energies show a shallow well and barrier in the entrance channel, which affect the collision dynamics at low temperatures. Different collision models are used to distinguish the reaction occurring at low- and high-temperature regions. The reaction proceeds rapidly via a complex-mode mechanism below room temperature showing strong negative temperature dependence, where the effects of molecular attraction, H-atom tunneling and recrossing of collision complexes are found to be important. The temperature dependence of the rate constant between 400 and 1000 K is positive, the values increasing in accordance with the increase of the mean speed of collision. The rate constant varies from $7.6{\times}10^{-12}$ at 150 K to $3.7{\times}10^{-12}$ at 1000 K via a minimum value of $2.5{\times}10^{-12}\;cm^3\;molecule^{-1}\;s^{-1}$ at 400 K.

Effects of Post Annealing and Oxidation Processes on the Shallow Trench Etch Process (Shallow Trench 식각공정시 발생하는 결함의 후속열처리 및 산화곤정에 따른 거동에 관한 연구)

  • 이영준;황원순;김현수;이주옥;이정용;염근영
    • Journal of Surface Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.237-244
    • /
    • 1998
  • In this stydy, submicron shallow trenches applied to STI(shallow tench isolation) were etched using inductively coupled $CI_2$/HBr and $CI_2/N_2$plasmas and the physical and electrical defects remaining on the etched silicon trench surfaces and the effects of various annealing and oxidation on the removal of the defects were studied. Using high resolution electron microscopy(HRTEM), Physical defects were investigated on the silicon trench surfaces etched in both 90%$CI_2$/ 10%$N_2$ and 50%$CI_2$/50%HBr. Among the areas in the tench such as trench bottom, bottom edge, and sidewall, the most dense defects were found near the trench bottom edge, and the least dense defects were found near the trench bottom edge, and least dense defects compared to that etched with ment as well as hydrogen permeation. Thermal oxidation of 200$\AA$ atthe temperature up to $1100^{\circ}C$apprars not to remove the defects formed on the etched silicon trenches for both of the etch conditions. To remove the physicall defects, an annealing treatment at the temperature high than $1000^{\circ}C$ in N for30minutes was required. Electrical defects measured using a capacitance-voltage technique showed the reduction of the defects with increasing annealing temperature, and the trends were similar to the results on the physical defects obtained using transmission electron microscopy.

  • PDF

A Kinetic Study of Br Atom Reactions with Trimethylsilane by the VLPR (Very Low Pressure Reactor) Technique$^1$

  • Choo Kwang Yul;Choe Mu Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.4
    • /
    • pp.196-202
    • /
    • 1985
  • A Very Low Pressure Reactor (VLPR) is constructed for the kinetic study of atom-molecule bimolecular elementary reactions. The basic principles and the versatility of the method are described. By using the VLPR technique the forward (k1) and the reverse (k-1) rate constants for Br atom reaction with trimethylsilane are studied; Br + $(CH_3)_3$SiH k1 ${\leftrightarrow}$ k-1 HBr + $(CH_3)_3$Si. From the kinetic data and the entropy estimation the bond dissociation energy for Si-H bond in trimethylsilane is calculated to be 90.1 kcal/mole $({\pm}1.1$ kcal/mole). The Arrhenius parameters for k1 are found to be log A = 10.6 l/mole·sec, $E_a$ = 4.4 kcal/mole respectively. For the comparison purpose analogous reaction for carbon compound ; Br + $(CH_3)_3$CH ${\rightarrow}$ HBr + $(CH_3)_3$C was also studied. The corresponding rate constant and equilibrium constant at $25^{\circ}C$ are found to be 2.67 ${\times}$ $10^6l$/mole${\cdot}$sec and 160 respectively.

Formation of Passivation Layer and Its Effect on the Defect Generation during Trench Etching (트렌티 식각시 식각 방지막의 형성과 이들이 결함 생성에 미치는 영향)

  • Lee, Ju-Wook;Kim, Sang-Gi;Kim, Jong-Dae;Koo, Jin-Gon;Lee, Jeong-Yong;Nam, Kee-Soo
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.634-640
    • /
    • 1998
  • A well- shaped trench was investigated in view of the defect distribution along trench sidewall and bottom using high resolution transmission electron microscopy. The trench was formed by HBr plasma and additive gases in magnetically enhanced reactive ion etching system. Adding $0_2$ and other additive gases into HBr plasma makes it possible to eliminate sidewall undercut and lower surface roughness by forming the passivation layer of lateral etching, resulted in the well filled trench with oxide and polysilicon by subsequent deposition. The passivation layer of lateral etching was mainly composed of $SiO_xF_y$ $SiO_xBr_y$ confirmed by chemical analysis. It also affects the generation and distribution of lattice defects. Most of etch induced defects were found in the edge region of the trench bottom within the depth of 10$\AA$. They are generally decreased with the thickness of residue layer and almost disappeared below the uni¬formly thick residue layer. While the formation of crystalline defects in silicon substrate mainly depends on the incident angle and energy of etch species, the region of surface defects on the thickness of residue layer formed during trench etching.

  • PDF