DOI QR코드

DOI QR Code

Reaction Dynamics of CH3 + HBr → CH4 + Br at 150-1000 K

  • Received : 2013.05.09
  • Accepted : 2013.05.30
  • Published : 2013.08.20

Abstract

The kinetics of the radical-polar molecule reaction $CH_3+HBr{\rightarrow}CH_4+Br$ has been studied at temperatures between 150 and 1000 K using classical dynamics procedures. Potential energy surfaces constructed using analytical forms of inter- and intramolecular interaction energies show a shallow well and barrier in the entrance channel, which affect the collision dynamics at low temperatures. Different collision models are used to distinguish the reaction occurring at low- and high-temperature regions. The reaction proceeds rapidly via a complex-mode mechanism below room temperature showing strong negative temperature dependence, where the effects of molecular attraction, H-atom tunneling and recrossing of collision complexes are found to be important. The temperature dependence of the rate constant between 400 and 1000 K is positive, the values increasing in accordance with the increase of the mean speed of collision. The rate constant varies from $7.6{\times}10^{-12}$ at 150 K to $3.7{\times}10^{-12}$ at 1000 K via a minimum value of $2.5{\times}10^{-12}\;cm^3\;molecule^{-1}\;s^{-1}$ at 400 K.

Keywords

References

  1. Andersen, H. C.; Kistiakowsky, G. B. J. Chem. Phys. 1943, 11, 6. https://doi.org/10.1063/1.1723780
  2. Kistiakowsky, G. B.; Van Artsdalen, E. R. J. Chem. Phys. 1944, 12, 469. https://doi.org/10.1063/1.1723896
  3. Williams, R. R., Jr.; Ogg, R. A., Jr, J. Chem. Phys. 1947, 15, 696. https://doi.org/10.1063/1.1746301
  4. Fettis. G. C.; Trotman-Dickenson, A. F. J. Chem. Soc. 1961, 3037. https://doi.org/10.1039/jr9610003037
  5. Batt, L.; Cruickshank, F. R. J. Phys. Chem. 1967, 71, 1836. https://doi.org/10.1021/j100865a045
  6. Russell, J. J.; Seetula, J. A.; Gutman, D. J. Am. Chem. Soc. 1988, 110, 3092. https://doi.org/10.1021/ja00218a017
  7. Seakins, P. W.; Pilling, M. J.; Niiranen, J. T.; Gutman, D.; Krasnoperov, L. N. J. Phys. Chem. 1992, 96, 9847. https://doi.org/10.1021/j100203a050
  8. Yu, T.; Lin, M. C. Int. J. Chem. Kinet. 1994, 26, 771. https://doi.org/10.1002/kin.550260711
  9. Dobis, O.; Benson, S. W. J. Am. Chem. Soc. 1995, 117, 8171. https://doi.org/10.1021/ja00136a014
  10. Nicovich, J. M.; van Dijk, C. A.; Kreutter, K. D.; Wine, P. H. J. Phys. Chem. 1991, 95, 9890. https://doi.org/10.1021/j100177a051
  11. Krasnoperov, L. N.; Mehta, K. J. Phys. Chem. A 1999, 103, 8008. https://doi.org/10.1021/jp991183i
  12. Seetula, J. A. Phys. Chem. Chem. Phys. 2002, 4, 455. https://doi.org/10.1039/b107407p
  13. Sheng, L.; Li, Z. S.; Liu, J. Y.; Xiao, J. F.; Sun, C. C. J. Comput. Chem. 2004, 25, 423. https://doi.org/10.1002/jcc.10388
  14. Krasnoperov, L. N.; Peng, J.; Marshall, P. J. Phys. Chem. A 2006, 110, 3110. https://doi.org/10.1021/jp054435q
  15. Trotman-Dickenson, A. F.; Milne, G. S. Tables of Bimolecular Gas Reactions, NSRDS-NBS 9, National Bureau of Standards, Washington, DC, 1967.
  16. Chen, Y.; Rauk, A.; Tschuikow-Roux, E. J. Phys. Chem. 1991, 95, 9900. https://doi.org/10.1021/j100177a053
  17. Seetula, J. A.; Eskola, A. J. Chem. Phys. 2008, 351, 141. https://doi.org/10.1016/j.chemphys.2008.04.008
  18. Golden, D. M.; Peng, J.; Goumri, A.; Yuan, J.; Marshall, P. J. Phys. Chem. A 2012, 116, 5847. https://doi.org/10.1021/jp209081v
  19. McElroy, C. T.; McLinden, C. A.; McConnell, J. C. Nature 1999, 397, 338. https://doi.org/10.1038/16904
  20. Lary, D. J. J. Geophys. Res. 1996, 101, 1505. https://doi.org/10.1029/95JD02463
  21. Platt, U.; Allan, W.; Lowe, D. Atmos. Chem. Phys. 2004, 4, 2393. https://doi.org/10.5194/acp-4-2393-2004
  22. Keil, A. D.; Shepson, P. B. J. Geophys. Res. 2006, 111, D17303. https://doi.org/10.1029/2006JD007119
  23. Liao, J.; Huey, L. G.; Scheuer, E. et al. Atmos. Chem. Phys. 2012, 12, 1327. https://doi.org/10.5194/acp-12-1327-2012
  24. Hydrogen bromide, Chapter 6, p. 43. Available at http://archive. defra.gov.uk/environment/quality/air/air-quality/publications/ halogens/chapter 6. Accessed April 26, 2013.
  25. Ree, J.; Kim, Y. H.; Shin, H. K. Int. J. Chem. Kinet. 2011, 43, 455. https://doi.org/10.1002/kin.20568
  26. Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255. https://doi.org/10.1021/ar020230d
  27. Eckart, C. Phys. Rev. 1930, 35, 1303. https://doi.org/10.1103/PhysRev.35.1303
  28. Wigner, E. Z. physik. Chem. (Leipzig) 1932, B19, 203.
  29. Bell, R. P. Proc. Roy. Soc. (London) 1933, 139, 466. https://doi.org/10.1098/rspa.1933.0031
  30. Bell, R. P. Tans. Faraday Soc. 1959, 55, 1. https://doi.org/10.1039/tf9595500001
  31. Shavitt, I. J. Chem. Phys. 1959, 31, 1359. https://doi.org/10.1063/1.1730599
  32. Shin, H. K. J. Chem. Phys. 1963, 39, 2934. https://doi.org/10.1063/1.1734125
  33. Zuev, P. S.; Sheridan, R. S.; Albu, T. V.; Truhlar, D. G.; Hrovat, D. A.; Borden, W. T. Science 2003, 299, 867. https://doi.org/10.1126/science.1079294
  34. Moss, R. A.; Sauers, R. R.; Sheridan, R. S.; Tian, J.; Zuev, P. S. J. Am. Chem. Soc. 2004, 126, 10196. https://doi.org/10.1021/ja0488939
  35. McMahon, R. J. Science 2003, 299, 833. https://doi.org/10.1126/science.1080715
  36. Landau, L. D.; Lifshitz, E. M. Quantum Mechanics; Pergamon 1958; pp 171-178.
  37. IMSL MATH/LIBRARY, Fortran Subroutines for Mathematical Applications, Version 2.0, IMSL, Houston, TX, 1991, pp 755-771
  38. Akin, F. A.; Ree, J.; Ervin, K. M.; Shin, H. K. J. Chem. Phys. 2005, 123, 064308.
  39. Su, J. Z.; Teitelbaum, H. Int. J. Chem. Kinet. 1994, 26, 159. https://doi.org/10.1002/kin.550260116
  40. Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B. Molecular Theory of Gases and Liquids; John Wiley & Sons: 1967; p 1200.
  41. Shin, H. K. J. Chem. Phys. 1967, 47, 3302. https://doi.org/10.1063/1.3192715
  42. Werner, H.-J.; Rosmus, P. J. Chem. Phys. 1980, 73, 2319. https://doi.org/10.1063/1.440382
  43. Jin, P.; Brinck, T.; Murray, J. S.; Politzer, P. Int. J. Quantum Chem. 2003, 95, 632. https://doi.org/10.1002/qua.10639
  44. Fernandez, B.; Coriani, S.; Rizzo, A. Chem. Phys. Lett. 1998, 288, 677. https://doi.org/10.1016/S0009-2614(98)00355-8
  45. Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules, Van Nostrand Reinhold, New York, 1979.
  46. Shimanouchi, T. ed., Tables of Molecular Vibrational Frequencies, Consolidated Vo1. I, NSRDS-NBS 39, National Bureau of Standards, Washington, DC, 1972.
  47. Herzberg, G. Electronic Spectra and Electronic Structure of Polyatomic Molecules, Van Nostrand, New York, 1966.
  48. Huang, Z.-H.; Guo, H. J. Chem. Phys. 1992, 97, 2110. https://doi.org/10.1063/1.463150
  49. Pamidimukkala, K. M.; Rogers, D.; Skinner, G. B. J. Phys. Chem. Ref. Data 1982, 11, 83. https://doi.org/10.1063/1.555656
  50. Robertson, S. H.; Wardlaw, D. M.; Hirst, D. M. J. Chem. Phys. 1993, 99, 7748. https://doi.org/10.1063/1.465704

Cited by

  1. O on Temperatures between 20 and 2000 K vol.119, pp.13, 2015, https://doi.org/10.1021/jp511505h
  2. Collision-induced Energy Transfer between Toluene and Halogen Molecules and CH Bond Dissociation vol.36, pp.11, 2015, https://doi.org/10.1002/bkcs.10525
  3. A Chemical Kinetic Mechanism for 2-Bromo-3,3,3-trifluoropropene (2-BTP) Flame Inhibition vol.47, pp.9, 2015, https://doi.org/10.1002/kin.20923
  4. O/HOD reactions using an ab initio based full-dimensional potential energy surface vol.18, pp.25, 2016, https://doi.org/10.1039/C6CP02986H
  5. Breakdown of the vibrationally adiabatic approximation in the early-barrier CH3 + HBr → CH4 + Br reaction vol.136, pp.5, 2017, https://doi.org/10.1007/s00214-017-2089-8
  6. O between 140 and 1100 K vol.40, pp.2, 2019, https://doi.org/10.1002/bkcs.11643
  7. In situ etching for control over axial and radial III-V nanowire growth rates using HBr vol.25, pp.50, 2013, https://doi.org/10.1088/0957-4484/25/50/505601