• Title/Summary/Keyword: H2O

Search Result 18,191, Processing Time 0.043 seconds

Beneficial Effect of Salviae Miltiorrhizae Radix(SR) on $H_2O_2$-induced Cell Death in Intestinal Epithelial Cells (단삼추출액이$H_2O_2$에 의해 유발된 인간의 장관상피세포의 손상에 미치는 영향)

  • Won-Ill, Kim;Woo-Hwan, Kim
    • The Journal of Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.164-173
    • /
    • 2002
  • 목적:반응성산소기들은 장관에서 여러 종류의 질병의 발생과 관련을 가지고 있는 것으로 알려져 있어, 이들에 의한 세포손상을 방지하는 약물의 개발은 시급한 실정이다. 본 연구에서는 항산화작용을 가진 약재로 보고 된 단삼추출액이 장관상피세포에서 $H_2O_2$에 의한 세포손상을 방지할 수 있는 지를 조사하고자 하였다. 방법:장관상피세포로는 사람의 소장상피세포에서 유래한 배양세포주인 Caco-2세포를 이용하였고, 세포손상 정도는 trypan blue exclusion assay를 통해 평가하였고, 지질의 과산화는 그 산물인 malondialdehyde의 량을 측정하여 산정하였다. 결과: $H_2O_2$는 처리 시간 및 농도에 비례하여 세포손상을 유발하였으며, 이러한 효과는 단삼추출액에 의해 농도의존적으로 방지되었다. $H_2O_2$에 의한 세포소상은 $H_2O_2$제거제인 catalase와 철착염제인 deferoxamine에 의해 방지되었으나 항산화제인 N,N-diphenyl-p-phenylenamine(DPPD)에 의해 영향을 받지 않았다. $H_2O_2$는 지질의 과산화를 증가시켰으며, 이러한 효과는 단삼추출액과 DPPD에 의해 억제되었다. 단삼추출액은 $H_2O_2$에 의한 세포내 ATP 고갈을 방지하였다. $H_2O_2$는 DNA 손상을 일으켰으며, 이러한 효과는 단삼추출액, catalase 및 deferoxamine에 의해 방지되었으나, DPPD에 의해서는 변화되지 않았다. 결론 : 이상의 결과를 종합하면 단삼추출액은 장관상피세포에서 $H_2O_2$에 의한 세포손상을 방지하며, 이러한 효과는 항산화작용이 아닌 다른 작용기전에 기인할 것으로 생각된다. 또한 본 연구의 결과는 $H_2O_2$가 장관상피세포에서 지질의 과산화를 유발하여 세포손상을 일으키지 않음을 가리킨다.

  • PDF

Activation of JNK and c-Jun Is Involved in Glucose Oxidase-Mediated Cell Death of Human Lymphoma Cells

  • Son, Young-Ok;Jang, Yong-Suk;Shi, Xianglin;Lee, Jeong-Chae
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.545-551
    • /
    • 2009
  • Mitogen-activated protein kinases (MAPK) affect the activation of activator protein-1 (AP-1), which plays an important role in regulating a range of cellular processes. However, the roles of these signaling factors on hydrogen peroxide ($H_2O_2$)-induced cell death are unclear. This study examined the effects of $H_2O_2$ on the activation of MAPK and AP-1 by exposing the cells to $H_2O_2$ generated by either glucose oxidase or a bolus addition. Exposing BJAB or Jurkat cells to $H_2O_2$ affected the activities of MAPK differently according to the method of $H_2O_2$ exposure. $H_2O_2$ increased the AP-1-DNA binding activity in these cells, where continuously generated $H_2O_2$ led to an increase in mainly the c-Fos, FosB and c-Jun proteins. The c-Jun-$NH_2$-terminal kinase (JNK)-mediated activation of c-Jun was shown to be related to the $H_2O_2$-induced cell death. However, the suppression of $H_2O_2$-induced oxidative stress by either JNK inhibitor or c-Jun specific antisense transfection was temporary in the cells exposed to glucose oxidase but not to a bolus $H_2O_2$. This was associated with the disruption of death signaling according to the severe and prolonged depletion of reduced glutathione. Overall, these results suggest that $H_2O_2$ may decide differently the mode of cell death by affecting the intracellular redox state of thiol-containing antioxidants, and this depends more closely on the duration exposed to $H_2O_2$ than the concentration of this agent.

Hydrogen Peroxide-induced Alterations in Na+-phosphate Cotransport in Renal Epithelial Cells

  • Jung, Soon-Hee
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.41 no.2
    • /
    • pp.83-92
    • /
    • 2009
  • This study was undertaken to examine the effect of oxidants on membrane transport function in renal epithelial cells. Hydrogen peroxide ($H_2O_2$) was used as a model oxidant and the membrane transport function was evaluated by measuring $Na^+$-dependent phosphate ($Na^+$-Pi) uptake in opossum kidney (OK) cells. $H_2O_2$ inhibited $Na^+$-Pi uptake in a dose-dependent manner. The oxidant also caused loss of cell viability in a dose-dependent fashion. However, the extent of inhibition of the uptake was larger than that in cell viability. $H_2O_2$ inhibited $Na^+$-dependent uptake without any effect on $Na^+$-independent uptake. $H_2O_2$-induced inhibition of $Na^+$-Pi uptake was prevented completely by catalase, dimethylthiourea, and deferoxamine, suggesting involvement of hydroxyl radical generated by an iron-dependent mechanism. In contrast, antioxidants Trolox, N,N'-diphenyl-p-phenylenediamine, and butylated hydroxyanisole did not affect the $H_2O_2$ inhibition. Kinetic analysis indicated that $H_2O_2$ decreased Vmax of $Na^+$-Pi uptake with no change in the Km value. Phosphonoformic acid binding assay did not show any difference between control and $H_2O_2$-treated cells. $H_2O_2$ also did not cause degradation of $Na^+$-Pi transporter protein. Reduction in $Na^+$-Pi uptake by $H_2O_2$ was associated with ATP depletion and direct inhibition of $Na^+$-$K^+$-ATPase activity. These results indicate that the effect of $H_2O_2$ on membrane transport function in OK cells is associated with reduction in functional $Na^+$-pump activity. In addition, the inhibitory effect of $H_2O_2$ was not associated with lipid peroxidation.

  • PDF

The Crystal and Molecular Structure of Sodium Sulfisoxazole hexahydrate (Sodium Sulfisoxazole Hexahydrate의 결정 및 분자구조와 수소결합에 관한 연구)

  • Young Ja Park;Chung Hoe Koo
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.19-34
    • /
    • 1976
  • The crystal structure of sodium sulfisoxazole hexahydrate, $C_{11}H_{12}N_3O_3SNa{\cdot}6H_2O$,has been determined by X-ray diffraction method. The compound crystallizes in the monoclinic space group $$P2_1}c$$ with a = 15.68(3), b = 7.70(2), c = 17.94(4)${\AA}$, ${\beta}$ = $118(2)^{\circ}$ and Z = 4. A total of 1717 observed reflections were collected by the Weissenberg method with $CuK{\alpha}$ radiation. Structure was solved by heavy atom method and refined by block-diagonal least-squares methods to the R value of 0.14. The conformational angle formed by the S-C(l) bond with that of N(2)-C(7), when the projection in taken along the S-N(2), is $73^{\circ}.$ The benzene ring is planar and makes an angle of $60^{\circ}$ with the plane of the isoxazole ring, which is also planar. The sodium atom has a distorted octahedral coordination of N(l) and five oxygen atoms from hydrate molecules. Sodium sulfisoxazole hexahydrate shows fourteen different hydrogen bondings in the crystal. These are six $O-H{\cdots}O-H bonds, three $O-H{\cdots}O$ bonds, two $O-N{\cdots}N,$ one $N-H{\cdots}O,O-H{\cdots}N,N-H{\cdots}O-H$ bond, with the distances in the range of 2.71 to $3.04{\AA}.$.

  • PDF

Oxidative modification of ferritin induced by hydrogen peroxide

  • Yoon, Jung-Hwan;An, Sung-Ho;Kyeong, Inn-Goo;Lee, Myeong-Seon;Kwon, Sang-Chul;Kang, Jung-Hoon
    • BMB Reports
    • /
    • v.44 no.3
    • /
    • pp.165-169
    • /
    • 2011
  • Excess free iron generates oxidative stress that may contribute to the pathogenesis of various causes of neurodegenerative diseases. In this study, we assessed the modification of ferritin induced by $H_2O_2$. When ferritin was incubated with $H_2O_2$, the degradation of ferritin L-chain increased with the $H_2O_2$ concentration whereas ferritin H-chain was remained. Free radical scavengers, azide, thiourea, and N-acetyl-$_L$-cysteine suppressed the $H_2O_2$-mediated ferritin modification. The iron specific chelator, deferoxamine, effectively prevented $H_2O_2$-mediated ferritin degradation in modified ferritin. The release of iron ions from ferritin was increased in $H_2O_2$ concentration-dependent manner. The present results suggest that free radicals may play a role in the modification and iron releasing of ferritin by $H_2O_2$. It is assumed that oxidative damage of ferritin by $H_2O_2$ may induce the increase of iron content in cells and subsequently lead to the deleterious condition.

Filtration Characteristics of H2O-C6H12O6 Solution at Cell Membrane Model of Kidney which Irradiated by High Energy X-Ray (고에너지 엑스선을 조사한 신장의 세포막모델에서 포도당수용액 (H2O-C6H12O6)의 여과작용특성)

  • Ko, In-Ho;Yeo, Jin-Dong
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.85-95
    • /
    • 2020
  • The filtration characteristics of H2O-C6H12O6 solution at cell membrane model in renal tubule which irradiated by high energy x-ray(linac 6MV) was investigated. The cell membrane model used in this experiment was a polysulfonated copolymerized membrane of m-phenylene-diamine(MPD) and trimesoyl chloride(TMC)-hexane. They were used to two cell membrane models(CM-1, CM-2). The cell membrane model composed of 0.5 wt% TMC-hexane solution(CM-2) had higher permeate flux(Jv) and rejection coefficient(R) than composed of 0.1 wt% TMC-hexane solution(CM-1). The permeate flux(Jv) and rejection coefficient(R) of H2O-C6H12O6 solution in two cell membrane models(CM-1, CM-2) were increased with increase of pressure drop and effective pressure difference. In this experiment range(pressure 1.5-4 MPa, temperature 36.5 ℃), permeate flux(Jv) of H2O solvent in irradiated membrane was found to be decreased about 20-30 times than non-irradiated membrane, permeate flux(Jv) and rejection coefficient(R) of H2O-C6H12O6 solution in irradiated membrane was found to be decreased about 2-13 times, about 4-6 times than non-irradiated membrane, respectively. The concentration increase of H2O-C6H12O6 solution at cell membrane model significantly was increased at rejection coefficient(R), was decreased at permeate flux(Jv). As the filtration of H2O-C6H12O6 solution in cell membrane model were abnormal, cell damages were appeared at cell.

Inhibition of IgM Secretion in Murine B Cell Lymphoma by Hydrogen Peroxide

  • Jang, Eun-Jung;Jo, Sung-Kee;Yoo, Byung-Sun
    • Toxicological Research
    • /
    • v.18 no.4
    • /
    • pp.363-367
    • /
    • 2002
  • Reactive of gen species (ROS) contribute to several cellular function and are involved in the regulation of signal transduction, gene expression, and proliferation. In the present study, we investigated the effect of $H_2O_2$ treatment on IgM secretion in LPS-stimulated murine B Iymphoma, CH12.LX. Cells were treated directly With $H_2O_2$ and stimulated with LPS. $H_2O_2$ treatment during 72 h time period inhibited IgM secretion in LPS-stimulated CH12.LX cells in a dose- and time-dependent manners. After treatment with 50 $\mu\textrm{M}$ $H_2O_2$ during 72 h time period, the level of IgM in LPS-stimulated CH12.LX cells was markedly decreased, whereas cell viability was not significantly changed. Addition of $H_2O_2$ concomitantly with LPS, or 12 h post-LPS stimulation, produced a significant inhibition of IgM secretion, Whereas inhibitory effect of $H_2O_2$ on IgM secretion was not observed when added 24 h after LPS stimulation. These findings suggest that $H_2O_2$ can inhibit the secretion of IgM in LPS-stimulated CH15.LX cells, and may alter the events necessary for terminal B cell differentiation.

Effects of $N_2O$/$SiH_4$Flow Ratio and RF Power on Properties of $SiO_2$Thick Films Deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD법에 의해 증착된 $SiO_2$후막 특성에서 $N_2O$/$SiH_4$Flow Ratio와 RF Power가 미치는 영향)

  • 조성민;김용탁;서용곤;임영민;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1037-1041
    • /
    • 2001
  • Silicon diosixde thick film using silica optical waveguide cladding was fabricated by Plasma Enhanced Chemical Vapor Deposition (PECVD) method, at a low temperature (32$0^{\circ}C$) and from (SiH$_4$+$N_2$O) gas mixtures. The effects of deposition parameters on properties of SiO$_2$thick films were investigated by variation of $N_2$O/SiH$_4$flow ratio and RF power. As the $N_2$O/SiH$_4$flow ratio decreased, deposition rate increased from 2.9${\mu}{\textrm}{m}$/h to maximum 10.1${\mu}{\textrm}{m}$/h. As the RF power increased from 60 W to 120 W, deposition rate increased (5.2~6.7 ${\mu}{\textrm}{m}$/h) and refractive index approached at thermally grown silicon dioxide (n=1.46).

  • PDF

Effect of some reagents added in culture media upon the mycelial growth of the Psallitoa Campestris (Psalliota Campestris의 균사생장(菌絲生長)에 미치는 무기염류(無機鹽類)의 영향(影響))

  • Yu, Tae-Jong
    • Applied Biological Chemistry
    • /
    • v.6
    • /
    • pp.57-59
    • /
    • 1965
  • According to the result of the observations on the effect of the reagents, $CuSO_4{\cdot}5H_2O$, $ZnSO_4{\cdot}7H_2O$ $MnSO_4{\cdot}4H_2O$, $HgCl_2$, upon the mycelial growth of psalliota campestris $HgCl_2$ showed the strongest effect on checking the mycelial growth $(,.008{\sim}0.01%)$ $CuSO_4{\cdot}5H_2O(0.030%)$, $ZnSO_4{\cdot}7H_2O(0.080%)$, came next and the $MnSO_4{\cdot}4H_2O(0.100%)$ was the weakest. Writer also found that showed the promoting effect of the mycelial growth in appropriate Concentration (at $0.015%\;CuSO_4{\cdot}5H_2O$, $0.030%ZnSO_4{\cdot}7H_2O$).

  • PDF

A Novel Method for Preparing of Oxoruthenates Complexes: trans-[RuO3(OH)2]2-, [RuO4]-, (n-Pr4N)+[RuO4]- and [RuO4 and Their Use as Catalytic Oxidants

  • Shoair, Abdel-Ghany F.
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.10
    • /
    • pp.1525-1528
    • /
    • 2005
  • The synthesis and characterization of ${K_3[Ru(C_2O_4)3]{\cdot}4H_2O\;(C_2O_4}^{2-}$ = oxalato anoin) complex are described, and its redox properties (in buffer solution of pH = 12) have been investigated. This complex is used for in situ generation of oxoruthenates complexes which have been characterized by electronic spectroscopy. Reaction of ${K_3[Ru(C_2O_4)3]{\cdot}4H_2O$ with excess ${S_2O_8}^{2-}$ in molar KOH generates trans-${[RuO_3(OH)_2]^{2-}/S_2O_8}^{2-}$ reagent while with excess ${BrO_3}^-$ in molar $Na_2CO_3$ generates ${[RuO_4]^-/BrO_3}^-$ reagent. Avoiding the direct use of [$RuO_4$] the organic-soluble $(n-Pr_4N)^+[RuO_4]^-$, (TPAP) has been isolated by reaction of $K_3[Ru(C_2O_4)3]{\cdot}4H_2O$ with excess ${BrO_3}^-$ in molar carbonate and n-$Pr_4$NOH. In a mixture of $H_2O/CCl_4$ ruthenium tetraoxide can be generated by reaction of $K_3[Ru(C_2O_4)3]{\cdot}4H_2O$ with excess ${IO_4}^-$. The catalytic activities of oxoruthenates that have been made from $K_3[Ru(C_2O_4)3]{\cdot}4H_2O$ towards the oxidation of benzyl alcohol, piperonyl alcohol, benzaldehyde and benzyl amine at room temperature have been studied.