Beneficial Effect of Salviae Miltiorrhizae Radix(SR) on $H_2O_2$-induced Cell Death in Intestinal Epithelial Cells

단삼추출액이$H_2O_2$에 의해 유발된 인간의 장관상피세포의 손상에 미치는 영향

  • Won-Ill, Kim (Dept. of Internal Medicine, College of Oriental Medicine Dongeui University) ;
  • Woo-Hwan, Kim (Dept. of Internal Medicine, College of Oriental Medicine Dongeui University)
  • Published : 2002.09.01

Abstract

목적:반응성산소기들은 장관에서 여러 종류의 질병의 발생과 관련을 가지고 있는 것으로 알려져 있어, 이들에 의한 세포손상을 방지하는 약물의 개발은 시급한 실정이다. 본 연구에서는 항산화작용을 가진 약재로 보고 된 단삼추출액이 장관상피세포에서 $H_2O_2$에 의한 세포손상을 방지할 수 있는 지를 조사하고자 하였다. 방법:장관상피세포로는 사람의 소장상피세포에서 유래한 배양세포주인 Caco-2세포를 이용하였고, 세포손상 정도는 trypan blue exclusion assay를 통해 평가하였고, 지질의 과산화는 그 산물인 malondialdehyde의 량을 측정하여 산정하였다. 결과: $H_2O_2$는 처리 시간 및 농도에 비례하여 세포손상을 유발하였으며, 이러한 효과는 단삼추출액에 의해 농도의존적으로 방지되었다. $H_2O_2$에 의한 세포소상은 $H_2O_2$제거제인 catalase와 철착염제인 deferoxamine에 의해 방지되었으나 항산화제인 N,N-diphenyl-p-phenylenamine(DPPD)에 의해 영향을 받지 않았다. $H_2O_2$는 지질의 과산화를 증가시켰으며, 이러한 효과는 단삼추출액과 DPPD에 의해 억제되었다. 단삼추출액은 $H_2O_2$에 의한 세포내 ATP 고갈을 방지하였다. $H_2O_2$는 DNA 손상을 일으켰으며, 이러한 효과는 단삼추출액, catalase 및 deferoxamine에 의해 방지되었으나, DPPD에 의해서는 변화되지 않았다. 결론 : 이상의 결과를 종합하면 단삼추출액은 장관상피세포에서 $H_2O_2$에 의한 세포손상을 방지하며, 이러한 효과는 항산화작용이 아닌 다른 작용기전에 기인할 것으로 생각된다. 또한 본 연구의 결과는 $H_2O_2$가 장관상피세포에서 지질의 과산화를 유발하여 세포손상을 일으키지 않음을 가리킨다.

Keywords

References

  1. Gastroenterology. v.81 Superoxide radicals and feline intestinal ischemia. Granger DN;Rutili G;McCord JM.
  2. Gasstroenterology. v.94 5-Aminosalicilic acid protect against ischemia.reperfusion-induced gastric bleeding in the rat. Kvietys PR;Smith SM;Grisham MB;Manci EA.
  3. Gastroenterology. v.106 Free radicals and pathogenesis during ischemia and reperfusion of the cat small intestine. Nilsson VA;Schoenberg MH;Aneman A;Poch B;Magadum S;Beger HG; Lundgren O.
  4. Dig Dis Sci. v.33 Possible role of oxygen free radicals in ethanol-induced gastric mucosal damage in rats. Szelenyi I;Brune K.
  5. Am J Physiol. v.258 Role of oxygen radicals in ethanol-induced damage to cultrured gastric mucosal cells. Mutoh H;Hiraishi H;Ota S;Ivey KJ;Terano A;Sugimoto T.
  6. Am J Physiol. v.261 Role of oxygen-derived free radicals in indomethacin-induced gastric injury. Vaananen P.M;Meddings JB;Wallace JL.
  7. Am J Physiol. 276 Qiu B;Pothoulakis C;Castagliuolo I;Nikulasson S;LaMont JT.
  8. Am J Pathol. v.130 Contribution of oxygen-derived free radicals to experimental necrotizing enterocolitis. Clark DA;Fornabaio DM;McNeill H;Mullane KM;Caravella SJ;Miller MJ.
  9. Gut. v.29 Role of oxygen derived free radicals in platelet activating factor induced bowel necrosis. Cueva JP;Hsueh W.
  10. Gastroenterology. v.97 Neutrophil-derived oxidants mediates formylmethiony1-leucyl-phenylalanine-induced increases in mucosal permeability in rats. Von Ritter C;Grisham MB;Hollwarth M;Inauen W;Granger DN.
  11. Gut. v.31 Role of reactive oxygen metabolites in experimental colitis. Keshavarzian A;Morgan G;Sedghi S;Gordon JH;Doria M.
  12. Res Exp Med. v.199 The effect of antioxidant therapy on colonic inflammation in the rat. Yavuz Y;Yuksel M;Yegen BC;Alican I.
  13. J Clin Invest. v.77 Role of reactive oxygen in bile salt stimulation of colonic epithelial proliferation. Craven PA;Pfanstiel J;DeRubertis FR.
  14. Gut. v.25 Macrophage activation, chronic inflammation and gastrointestinal disease. Tanner AR;Arthur MJ;Wright R.
  15. Clin Sci. v.69 The role of phagocytes in inflammatory bowel disease. Hermanowicz A;Gibson PR;Jewell DP.
  16. Hepatogastroenterology. v.45 Mediators of inflammation: production and implication in inflammatory bowel disease. Kolios G;Petoumenos C;Nakos A.
  17. J Lab Clin Med. v.119 Free radicals, antioxidants, and human disease: where are we now? Halliwell B;Gutteridge JMC;Cross CE.
  18. Lab Invest. v.62 Biology of disease: Mechanisms of cell injury by activated oxygen species. Farber JL;Kyle ME;Coleman JB
  19. Toxicol Appl Pharmacol. v.141 Differential effect of Ca${^2}{^+}$ on oxidant-induced lethal cell injury and alterations of membrane transport functional integrity in renal cortical slices. Kim YK;Kim YH.
  20. Toxicol Appl Pharmacol v.166 Role of lipid peroxidation and poly (ADP-ribose) polymerase activation in oxidant-induced membrane transport dysfunction in opposum kidney (OK) cells. Min SK;Kim SY;Kim CH;Woo JS;Jung JS;Kim YK.
  21. Biochim Biophys Acta. v.1092 Lipid peroxidation, protein thiol oxidation and DNA damage in hydrogen peroxide-induced injury to endothelial cells: role of activation of poly(ADP-robose)polymerase. Kirkland JB.
  22. Arch Biochem Biophys. v.286 Reactive oxygen injury to cultured pulmonary artery endothelial cells: mediation by poly(ADP-ribose)polymerase activation causing NAD depletion and altered energy balance. Thies RL;Autor AP.
  23. Wonsaegimsangbonchohak. Sin MK.
  24. Bonchohak Lee SI.
  25. Exp Toxicol Pathol. v.47 Confirmation that magnesium lithospermate B has a hydroxyl radical- scavenging action. Yokozawa T;Chung HY;Dong E;Oura H.
  26. J Pharmacol Exp Ther. v.290 Transport characteristics of diphenhydramine in human intestinal epithelial Caco-2 cells:Contribution of pH-dependent transport system. Mizuuchi H;Katsura T;Saito H;Hashimoto Y;Inui KI.
  27. Am J Physiol. v.277 Transport of thiamine in human intestine:mechanism and regulation in intestinal epithelial cell model Caco-2. Said HM;Ortiz A;Kumar CK;Chatterjee N;Dudeja PK;Rubin S.
  28. Anal Biochem. v.86 Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Uchiyama M;Mihara M.
  29. Anal Biochem. v.72 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Bradford MM.
  30. Environ Mol Mutagen. v.11 DNA precipitation assay a rapid and simple method for detecting DNA damage in mammalian cells. Olive PL.
  31. Lab Invest. v.69 Cell and tissue responses to oxidative damage. Janssen YM;Houten BV;Borm PJA;Mossman BT.
  32. J Clin Invest v.82 Oxidant-induced DNA damage of target cells. Schraufstatter I;Hyslop PA;Jackson JH;Cochrane CG.
  33. Free Radic Biol Med. v.12 Role of reactive oxygen species in intestinal diseases. Van der Vliet A;Bast A.
  34. Lab Invest. v.57 Source of iron neutrophil-mediated killing of endothelial cells. Gannon DE;Varani J;Phan SH;Ward JH;Kaplan J;Till GO;Simon RH;Ryan US; Ward PA.
  35. Arch Biochem Biophys. v.269 tert-Butyl hydroperoxide kills cultured hepatocytes by peroxidizing membrane lipids. Masaki N;Kyle ME;Farber JL.
  36. Toxicol Appl Pharmacol. v.78 Organic hydroperoxide-induced lipid peroxidation and cell death in isolated hepatocytes. Rush GF;Gorski JR;Ripple MG;Sowinski J;Bugelski P;Hewitt WR.
  37. Am J Physiol. v.268 Role of lipid peroxidation in H202-induced renal epithelial (LLC-PK1) cell injury. Salahudeen AK.
  38. Arch Biochem Biophys. v.284 Inhibition of iodoacetamide and t-butylhydroperoxide toxicity in LLC-PK1 I cells by antioxidants:A role for lipid peroxidation in alkylation induced cytotoxicity. Chen Q;Stevens JL.
  39. Kid Int. v.45 Effect of pyruvate on oxidant injury to isolated and cellular DNA. Nath KA;Enright H;Nutter L;Fischereder M;Zou JN;Hebbel RP.
  40. Am J Physiol. v.263 Role of intracellular calcium in hydrogen peroxide-induced renal tubular cell injury. Ueda N;Shah SV.
  41. Am J Physiol. v.272 Dissociation of oxidant-induced ATP depletion and DNA damage from early cytotoxicity in LLC-PK1 cells. Andreoli SP;Mallett CP.
  42. FEBS Lett. v.373 Oxidative DNA damge by t-butyl hydroperoxide causes DNA single strand beaks which is not linked to cell lysis. A mechanisric study in freshly isolated rat hepatocytes. Lautour I;Demoulin JB;Buc-Calderon P.