• Title/Summary/Keyword: H. 264

Search Result 1,879, Processing Time 0.029 seconds

Video Shot Retrieval in H.264/AVC compression domain (H.264/AVC 압축 영역에서의 동영상 검색)

  • Byun Ju-Wan;Kim Sung-Min;Won Chee-Sun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.5 s.311
    • /
    • pp.72-78
    • /
    • 2006
  • In this paper, we present a video shot retrieval algorithm in H.264/AVC compression domain. Unlike previous standards such as MPEG-2 and 4, H.264/AVC supports a variable block size for motion compensation. Therefore, existing video retrieval algorithms exploiting the motion vectors in MPEG-2 and 4 domains are not appropriate for H.264/AVC. So, we devise a method to project motion vectors with larger than $4{\times}4$ block sizes into those for the smallest $4{\times}4$ blocks. It also uses correlations among features for the measure of similarity. Experimental results with standard videos of 10558 frames and commercial videos of 48161 frames show that the proposed method yields ANMRR less than 0.2.

A Multi-Channel Trick Mode Play Algorithm and Hardware Implementation of H.264/AVC for Surveillance Applications (H.264/AVC 감시 어플리케이션용 멀티 채널 트릭 모드 재생 알고리즘 및 하드웨어 구현)

  • Jo, Hyeonsu;Hong, Youpyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1834-1843
    • /
    • 2016
  • DVRs are the most common recording and displaying devices used for surveillance. Video compression plays a key role in DVRs for saving storage; the video compression standard, H.264/AVC, has recently become the dominant choice for DVRs. DVRs require various display modes, such as fast-forward, backward play, and pause; these are called trick modes. The implementation of precise trick mode play requires a very high decoding capability or a very intelligent scheme in order to handle the high computation complexity. The complexity is increased in many surveillance applications where more than one camera is used to monitor multiple spots or to monitor the same area using various angles. An implementation of a trick mode play and a frame buffer management scheme for the hardware-based H.264/AVC codec for multi-channel is presented in this paper. The experimental results show that exact trick mode play is possible using a standard H.264/AVC video codec with keyframe encoding feature at the expense of bitstream size increase.

Motion Vector Recovery Scheme for H.264/AVC (H.264/AVC을 위한 움직임 벡터 복원 방법)

  • Son, Nam-Rye
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.5
    • /
    • pp.29-37
    • /
    • 2008
  • To transmit video bit stream over low bandwidth such as wireless channel, high compression algorithm like H.264 codec is exploited. In transmitting high compressed video bit-stream over low bandwidth, packet loss causes severe degradation in image quality. In this paper, a new algorithm for recovery of missing or erroneous motion vector is proposed. Considering that the missing or erroneous motion vectors in blocks are closely correlated with those of neighboring blocks. Motion vector of neighboring blocks are clustered according to average linkage algorithm clustering and a representative value for each cluster is determined to obtain the candidate motion vector sets. As a result, simulation results show that the proposed method dramatically improves processing time compared to existing H.264/AVC. Also the proposed method is similar to existing H.264/AVC in terms of visual quality.

Adaptive Intra Fast Algorithm of H.264 for Video Surveillance (보안 영상 시스템에 적합한 H.264의 적응적 인트라 고속 알고리즘)

  • Jang, Ki-Young;Kim, Eung-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12C
    • /
    • pp.1055-1061
    • /
    • 2008
  • H.264 is the prominent video coding standard in various applications such as real-time streaming and digital multimedia broadcasting, since it provides enhanced compression performance, error resilience tools, and network adaptation. Compression efficiency of H.264 has been improved, however, it requires more computing and memory access than traditional methods. In this paper we proposed adaptive intra fast algorithm for real-time video surveillance system reducing the encoding complexity of H264/A VC. For this aim, temporal interrelationship between macroblock in the previous and the current frame is used to decide the encoding mode of macroblock fast. As a result, though video quality was deteriorated a little, less than 0.04dB, and bit rate was somewhat increased in suggested method, however, proposed method improved encoding time significantly and, in particular, encoding time of an image with little changes of neighboring background such as surveillance video was more shortened than traditional methods.

Design of CAVLC Decoder for H.264/AVC (H.264/AVC용 CAVLC 디코더의 설계)

  • Jung, Duck-Young;Sonh, Seung-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1104-1114
    • /
    • 2007
  • Digital video compression technique has played an important role that enables efficient transmission and storage of multimedia data where bandwidth and storage space are limited. The new video coding standard, H.264/AVC, developed by Joint Video Team(JVT) significantly outperforms previous standards in compression performance. Especially, variable length code(VLC) plays a crucial pun in video and image compression applications. H.264/AVC standard adopted Context-based Adaptive Variable Length Coding(CAVLC) as the entropy coding method. CAVLC of H.264/AVC requires a large number of the memory accesses. This is a serious problem for applications such as DMB and video phone service because of the considerable amount of power that is consumed in accessing the memory. In order to overcome this problem in this paper, we propose a variable length technique that implements memory-free coeff_token, level, and run_before decoding based on arithmetic operations and using only 70% of the required memory at total_zero variable length decoding.

Efficient Intra Predictor Design for H.264/AVC Decoder (H.264/AVC 복호기를 위한 효율적인 인트라 예측기 설계)

  • Kim, Ok;Ryoo, Kwangki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.175-178
    • /
    • 2009
  • H.264/AVC is a video coding standard of ITU-T and ISO/IEC, and widely spreads its application due to its high compression ratio more than twice that of MPEG-2 and high image quality. In this paper, we explained Intra Prediction in H.264/AVC, which is able to achieve higher compressing efficiency from correlation removal of adjacent samples in spatial domain, and proposed efficient Intra Predictor architecture design for H.264/AVC decoder. The proposed system reduced computation cycle using processing element and precomputation processing element and also reduced the number of access to external memory using efficient register. We designed the proposed system with Verilog-HDL and verified with suitable test vector. The proposed Intra Predictor achieved about 60% cycle reduction comparing with existing Intra Predictors.

  • PDF

An Efficient Dynamic Entropy Coding by using Multiple Codeword in H.264/AVC (다중 부호어를 이용한 효율적인 H .264/AVC 동적 부호화 방법)

  • 백성학;문용호;김재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1055-1061
    • /
    • 2004
  • In this paper, we propose an efficient dynamic coding scheme by using multiple codewords in H.264/AVC entropy coding. The exponential Golomb (Exp-Golomb) codewords used in H.264/AVC do not reflect enough the symbol distributions of the combined syntax element in (7) due to their static probability distribution characteristics. However, the multiple codewords in this paper have different statistical characteristics. we propose a dynamic coding scheme by using selectively among multiple codewords to encode the combined syntax element according to given image sequences. Simulation results show that our proposed scheme outperforms the existing (7) method in compression efficiency without loss of quality.

Analyzing of Motion Vector in H.264 Codec For Frame Rate Up Conversion (프레임율 변환을 위한 H.264코덱의 움직임 벡터 분석)

  • Kim, Sang-Chul;Jung, Hyun-Jong;Song, In-Sun;Nang, Jong-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06a
    • /
    • pp.164-166
    • /
    • 2012
  • 최근 스마트 기기의 보급과 무선 인터넷망의 보급으로 언제 어디에서나 비디오를 시청할 수 있다. 하지만 무선 인터넷 망의 품질이 안좋을 경우 영상의 QoS(Quality of Service)를 낮춰 프레임을 스킵하여 전송하게 된다. 이 때 FRUC(Frame Rate Up Conversion)기술을 적용한다면 원본의 프레임 레이트를 확보할 수 있어 QoS를 높일 것으로 기대한다. FRUC에서 MV(Motion Vector)추정시에 연산량이 매우 높아서 스마트 기기에 적용하는 것이 어렵지만 H.264코덱으로 인코딩된 동영상은 자체적으로 MV정보를 갖고 있기 때문에 이 MV를 FRUC에 적용할 수 있다면 FRUC의 연산량을 줄일 수 있을 것이다. 이를 위해서 H.264에 적용된 ME(Motion Estimation)와 FRUC에 적용된 ME의 차이를 고려하여 H.264코덱의 MV가 유용한지 분석하는 것이 선행돼야 한다. 본 논문에서는 H.264 MV와 FRUC의 MV의 차이를 분석하고 유용성을 판단하는 실험을 통해 H.264로 인코딩 된 비디오의 MV중 상당수가 FRUC에 적합함을 확인했다.

Enhanced Frame-Layer Rate Control for High-motion Low-bit rate Video in H.264 (저 비트율 영상에 대한 향상된 H.264 프레임 단위 데이터율 제어 알고리즘)

  • Lee, Chang-Hyun;Lee, Won-Jae;Kim, Jae-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.6 s.360
    • /
    • pp.77-82
    • /
    • 2007
  • In the existing frame-layer rate control for H.264, buffer status and content complexity are used improperly, causing quality fluctuations of high-motion video at low bit rates and high frame rates (under 19.2 kbps at 30 fps). We propose an enhanced H.264 frame-layer rate control scheme to obtain steady video quality and stable buffer management. Experimental results showed that the proposed scheme performed better than existing schemes.

Frame Partition based Parallelization of H.264/AVC decoder (프레임 분할 기반 병렬화 H.264/AVC 디코더)

  • Kim, Won-Jin;Park, Joo-Yul;Chung, Ki-Seok
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.252-255
    • /
    • 2010
  • 고해상도의 동영상 서비스가 보편화 되면서 동영상을 빠르게 처리를 위한 연구가 활발히 이루어 지고 있다. 그리고 멀티코어 프로세서의 사용이 증가 하고 멀티코어 시스템에서 H.264/AVC 디코더를 구현하기 위하여 다양한 병렬화 방법이 제안되고 있다. 하지만 H.264/AVC디코더의 병렬화를 진행하는 과정에서 각 스레드에서 처리하는 데이터의 처리시간 차이로 인하여 스레드의 동기를 확인 해야 한다. 이로 인하여 병렬화를 통한 성능 향상의 걸림돌이 된다. 우리는 이러한 병렬화 과정에서 발생하는 문제점을 고려하여 효과적으로 H.264/AVC 디코더를 병렬화 하는 방법에 대하여 연구하였다. 우리가 제안하는 Frame Partition based Parallelization (FPP) 방법은 프레임을 매크로 블록 묶음으로 나누어 병렬화 한다. 그리고 병렬화 과정에서 스레드를 처리하는 방법을 개선하여 성능을 향상 시켰다. 본 논문에서는 FFmpeg H.264/AVC 디코더를 이용하여 실험 하였고 인텔 쿼드 코어 기반의 멀티코어 시스템에서 멀티 스레드로 구현하였다. 우리는 FPP 방법을 적용하여 병렬화 방법 적용 전 H.264/AVC 디코더와 비교하여 최대 53%의 성능 향상을 보였다.

  • PDF