• Title/Summary/Keyword: H-transferase

Search Result 273, Processing Time 0.027 seconds

Optimization of Culture Conditions for D-Ribose Production by Transketolase-Deficient Bacillus subtilis JY1

  • Park, Yong-Cheol;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.665-672
    • /
    • 2004
  • D-Ribose is a five-carbon sugar used for the commercial synthesis of riboflavin, antiviral agents, and flavor enhancers. Batch fermentations with transketolase-deficient B. subtilis JY1 were carried out to optimize the production of D-ribose from xylose. The best results for the fermentation were obtained with a temperature of $37^{\circ}C$ and an initial pH of 7.0. Among various sugars and sugar alcohols tested, glucose and sucrose were found to be the most effective for both cell growth and D-ribose production. The addition of 15 g/l xylose and 15 g/l glucose improved the fermentation performance, presumably due to the adequate supply of ATP in the xylose metabolism from D-xylulose to D-xylulose-5-phosphate. A batch culture in a 3.7-1 jar fermentor with 14.9 g/l xylose and 13.1 g/l glucose resulted in 10.1 g/l D-ribose concentration with a yield of 0.62 g D-ribose/g sugar consumed, and 0.25 g/l-h of productivity. Furthermore, the sugar utilization profile, indicating the simultaneous consumption of xylose and glucose, and respiratory parameters for the glucose and sucrose media suggested that the transketolase-deficient B. subtilis JY1 lost the glucose-specific enzyme II of the phosphoenolpyruvate transferase system.

Characterization of Glutaryl 7-ACA Acylase from Pseudomonas diminuta KAC-1

  • Kim, Dae-Weon;Kang, Sang-Mo;Yoon, Ki-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.452-457
    • /
    • 2001
  • The glutaryl 7-aminocephalosporanic acid (glutaryl 7-ACA) acylase was purified from Pseudomonas diminuta KAC-1 cells isolated from soil, and characterized. The acylase was purified by procedures including ammonium sulfate fractionation and column chromatographies on DEAE-Sepharose, Phenyl-Sepharose, Q-Sepharose, and Superose 12H/R. The negative acylase was found to be composed of two subunits with molecular masses of approximately 55 kDa and 17 kDa, respectively. The isoelectric point of the enzyme was 4.0. The specific activities of the purified acylase were 8.0 and 7.0 U/mg on glutaryl 7-ACA and glutaryl 7-aminodesacetoxy cephalosporanic acid (glutaryl 7-ADCA), respectively, and $K_m$ values were 0.45 mM for glutaryl 7-ADCA and 0.67 mM for glutaryl 7-ADCA. The enzyme had a pH optimum at 8.0 and a tmperature optimum at $40^{\circ}C$. The acylase catalyzed the synthesis of glutaryl 7-ACA from glutaric acid and 7-ACA as well as the hydrolysis of glutaryl 7-ADCA, although the reaction rate of the synthesis was slower than that of the hydrolysis. In addition, it was found that the enzyme had a glutaryl transferase activity, thereby transferring the glutaryl group from one cephalosporin nucleus to another.

  • PDF

Molecular Analysis and Enzymatic Characterization of Cathepsin B from Olive Flounder (Paralichthys olivaceus) (넙치 카텝신 B의 분자생물학적 분석 및 효소학적 특성 연구)

  • Jo, Hee-Sung;Kim, Na-Young;Lee, Hyung-Ho;Chung, Joon-Ki
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.3
    • /
    • pp.543-552
    • /
    • 2014
  • Papain family중 하나인 cysteine protease는 근골격계 질환 치료를 위한target molecule로 인식 되어왔으며 Cathepsin B 는 단백질 분해의 초기과정에 관여하는 cysteine proteases 중 하나이다. 본 연구는 넙치의 cathepsin B 유전자의 발현 양상과 넙치 cathepsin B(PoCtB)의 클로닝, 발현 및 효소특성을 분석하였다. cDNA Library Screening을 이용하여 넙치의 cDNA를 클로닝하였다. 넙치의 동정된 cathepsin B 유전자는 993bp의 open reading frame과 330개의 아미노산으로 이루어져있다. Cathepsin B의 propeptide region 내에 GNFD motif와 occluding loop 가 존재함으로써 이것이 명백하게 cathepsin B group이라는 것을 보여주며, 계통 유전학적 분석 결과 다른 종의 cathepsin B에 비해 초창기에 분화되어 나온 것으로 사료된다. mature enzyme인 maPoCtB은 fusion protein인 glutathione S-transferase를 포함하는 pGEX-4T-1 vector에 삽입하여 E.coli 균주인 $DH5{\alpha}$ 내에 발현시켰다. 재조합 단백질인 PoCtB을 과발현 시킨 결과 53kDa의 분자량을 가진다. 넙치 cathepsin B 활성은 Z-Arg-Arg-AMC와 같은 fluorogenic 펩타이드 기질을 이용하여 측정되었고 적정 pH는 pH.7.5 이다.

Kinetic Properties of Wild-type and C117D Mutant UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA) from Haemophilus influenzae

  • Han, Seong-Gu;Jin, Bong-Suk;Lee, Won-Kyu;Yu, Yeon-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2549-2552
    • /
    • 2011
  • In this study, the kinetic properties of wild-type and C117D mutant H. influenzae MurA (Hi MurA), which catalyzes the first reaction in the biosynthetic pathway of the cell wall, were characterized. Purified recombinant Hi MurA was active at pH values ranging from pH 5.5 to pH 10, and its $K_m$ (UNAG), $K_m$ (PEP), and $k_{cat}$ values were measured to be 31 ${\mu}M$, 24 ${\mu}M$, and 210 $min^{-1}$, respectively. Hi MurA activity was effectively inhibited by fosfomycin with an $IC_{50}$ value of 60 ${\mu}M$. Hi MurA contains a cysteine residue (C117) at the loop region near the PEP binding, whereas MurA from fosfomycin resistant Mycobaterium tuberculosis or Chlamydia trachomatis contain an aspartate residue instead of the cysteine at the corresponding site. Aspartate substitution of Cys117 in Hi MurA shifted its optimum pH from 7.8 to 6.0. In addition, the $K_m$ values for UNAG and PEP were increased to 160 ${\mu}M$ and 150 ${\mu}M$, respectively, and the $k_{cat}$ value was significantly reduced to 41 $min^{-1}$. Furthermore, the C117D mutant form of Hi MurA was not inhibited by 1 mM fosfomycin. These results indicate that the Cys117 of Hi MurA is the binding site of fosfomycin and plays an important role in the fast turnover of the catalytic reaction.

Time-course Responses of Hepatic Xenobiotic Metabolizing Enzymes and Stress in Olive Flounder (Paralichthys olivaceus) Exposed to Formalin (Formalin에 약욕시킨 넙치(Paralichthys olivaceus)의 스트레스 반응과 간장 약물대사효소의 경시적 반응)

  • Lee Ji-Seon;Kim Pyong-Kih;Lee Kyoung-Seon;Jeon Joong-Kyun
    • Journal of Aquaculture
    • /
    • v.19 no.2
    • /
    • pp.90-94
    • /
    • 2006
  • The effects of formalin on mixed function oxygenase (MFO) system and stress-response were investigated in olive flounder (Paralichthys olivaceus). Olive flounder was exposed to formalin at the concentration of 300 ppm for 1, 2, 4 and 16 h. Levels of stress-response enzymes together with total protein, glucose and osmolality were quantitatively determined in blood, and the activities of phase I (cytochrome P450, ethoxyresorufin deethylase) and phase II (glutathione S-transferase) hepatic enzymes were also determined. Since the formalin-exposure for 16 h resulted no significant changes in aspartate aminotransferase and alanine aminotransferase, specific enzymes for liver damage, it was thought that it did not cause hepatic tissue damage at the concentration of 300 ppm. However, hepatic MFO system was induced at 1 to 4 h, and stress response was induced after 16 h of exposure. Moreover, it is considered that the depression of MFO activity after 16 h of exposure may not be adaptation to formalin, but toxic response. These results suggest that low concentration of formalin does not cause hepatic tissue damage of fish, but could induce MFO and stress response.

Development of Bovine Specific Leptin Radioimmunoassay and Relationship of Plasma Leptin with Vitamin A and Age of Wagyu

  • Yang, S.H.;Kawachi, H.;Khan, M.A.;Lee, S.Y.;Kim, H.S.;Ha, Jong K.;Lee, W.S.;Lee, H.J.;Ki, K.S.;Kim, S.B.;Sakaguchi, S.;Maruyama, S.;Yano, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.9
    • /
    • pp.1286-1295
    • /
    • 2008
  • Leptin is produced by adipocytes and its role in the regulation of lipid metabolism, feed intake, productive and reproductive performance of domestic animal species has been greatly stressed and extensively investigated in recent years. This study was conducted to develop a radioimmunoassay (RIA) for the estimation of plasma bovine leptin and to determine plasma leptin concentration in fattening Japanese Black cattle (Wagyu) and its crossbreds at commercial farms. Relationships of plasma leptin with plasma vitamin A and age of crossbred cattle were also determined. Recombinant bovine leptin (rbleptin) was produced by the E. coli overexpressed leptin as a GST (glutathione S-transferase)-fusion protein. Then antiserum against bovine leptin was obtained by its immunization in rabbits. Using this antiserum, a bovine specific RIA was developed and plasma leptin level was determined in 120 crossbred fattening cattle (WagyuHolstein, 50:50) at commercial farms. The plasma leptin level increased with the age of cattle and its level was greater in the crossbred heifers than in the steers. Plasma vitamin A level was negatively correlated with plasma leptin level in crossbred heifers and steers. This relationship was stronger in heifers than in steers. Plasma leptin was gradually increased with advancing age in fattening Wagyu cattle. In conclusion, development of a bovine specific RIA to estimate plasma leptin will contribute to better understanding of the role of leptin in cattle.

Recovery of Cyclodextrin Glucanotransferase by Adsorption to Starch (전분흡착에 의한 Cyclodextrin Glucanotransferase의 회수)

  • 김진현;홍승서;이현수
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.128-132
    • /
    • 2001
  • Cyclodextrin glucanotransferase (EC 2.4.1.19 : 1,4-$alpha$-glucan 4-$alpha$-D-(1,4-glucano) transferase, cyclizing; CGTase) was recovered by starch adsorption. The adsorption and desorption of CGTase to starch was studied as a function of pH, temperature, and starch type. The optimal pH, temperature, and starch for adsorption were, 8.0, $4^{circ}C$, and 1% (w/v) corn starch, respectively, per 205 U/mL enzyme activity in the presence of 25% (w/v) ammonium sulfate. The maximum adsorption ratio was 95%. On the other hand, the optimal pH, temperature, and starch type for desorption were 8.0 (tris-buffer), $50^{circ}C$, and oxidized starch, respectively. The maximum desorption ratio was 98% by tris-buffer solution at pH 8.0. The efficiency of adsorption and desorption were affected slightly by the removal of cells from the fermentation broth.

  • PDF

Chemopreventive Potential of Salvia miltiorrhiza Fraction Extracts (단삼 분획추출물의 암예방 효과)

  • Shon Yun-Hee;Cho Hyun-Jung;Chang Hyeun-Wook;Son Kun-Ho;Nam Kyung-Soo
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.369-374
    • /
    • 2006
  • Six fractions of Salvia miltiorrhiza were tested for their chemopreventive potentials using biochemical markers of carcinogenesis such as quinone reductase (QR), glutathione S-transferase (GST) and glutathione (GSH). Seventy percentage of EtOH extract was potent inducer of QR activity in Hepa1c1c7 murine hepatoma cells. GST activity was increased about 1.4-fold with EtOAc extract at concentration of 50 ${\mu}g/ml$. GSH levels were significantly increased with $H_2O$ extract, 70% EtOH extract and water extract at concentration of 50 ${\mu}g/ml$ (p<0.005). From these results, 70% EtOH extract (250 mg/kg) was intragastrically administered to ICR mice for 14 days. QR, GST and GSH levels were significantly increased with the 70% EtOH treatment. These studies suggest that the 70% EtOH extract of S. miltiorrhiza could be considered as a potential agent for cancer chemoprevention.

Contribution of Arginine 13 to the Catalytic Activity of Human Class Pi Glutathione Transferase P1-1

  • Kong, Ji-Na;Jo, Dong-Hyeon;Do, Hyun-Dong;Lee, Jin-Ju;Kong, Kwang-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2497-2502
    • /
    • 2010
  • Arg13 is a conserved active-site residue in all known Pi class glutathione S-transferases (GSTs) and in most Alpha class GSTs. To evaluate its contribution to substrate binding and catalysis of this residue, three mutants (R13A, R13K, and R13L) were expressed in Escherichia coli and purified by GSH affinity chromatography. The substitutions of Arg13 significantly affected GSH-conjugation activity, while scarcely affecting glutathione peroxidase or steroid isomerase activities. Mutation of Arg13 into Ala largely reduced the GSH-conjugation activity by approximately 85 - 95%, whereas substitutions by Lys and Leu barely affected activity. These results suggest that, in the GSH-conjugation activity of hGST P1-1, the contribution of Arg13 toward catalytic activity is highly dependent on substrate specificities and the size of the side chain at position 13. From the kinetic parameters, introduction of larger side chains at position 13 results in stronger affinity (Leu > Lys, Arg > Ala) towards GSH. The substitutions of Arg13 with alanine and leucine significantly affected $k_{cat}$, whereas substitution with Lys was similar to that of the wild type, indicating the significance of a positively charged residue at position 13. From the plots of log ($k_{cat}/{K_m}^{CDNB}$) against pH, the $pK_a$ values of the thiol group of GSH bound in R13A, R13K, and R13L were estimated to be 1.8, 1.4, and 1.8 pK units higher than the $pK_a$ value of the wild-type enzyme, demonstrating the contribution of the Arg13 guanidinium group to the electrostatic field in the active site. From these results, we suggest that contribution of Arg13 in substrate binding is highly dependent on the nature of the electrophilic substrates, while in the catalytic mechanism, it stabilizes the GSH thiolate through hydrogen bonding.

Polyamine 함량이 증가된 형질전환 담배 식물체에서의 스트레스 저항성에 관한 연구

  • Wi, Su-Jin;Park, Gi-Yeong
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.189-192
    • /
    • 2001
  • We have investigated the effects of abiotic and biotic stresses on leaf senescence using transgenic tobacco plants, in which cellular contents of polyamines were increased by introducing the genes of polyamine and ethylene biosynthesis in sense or antisense orientation. These transgenic plants showed accumulations of polyamines at higher levels than were found in wild-type. Stress-induced senescence was attenuated in transgenic plants cpmpared with wild-type plants, in terms of total chlorphyll loss and phenotypic changes after oxidative stress of hydrogen peroxide($H_2O_2$), high salinity, acid stress (pH3.0), ABA and fungal pathogen(phytophothora parasitica pv.Nicotianae). Transcripts for antioxidant enzyme, glutathionine-S-transferase and catalase, were also more abundant in transgenic plants than wild-type plants. These result suggested that higher expression of those genes caused a broad-spectrum resistance to abiotic stress/biotic stress. These phenomena indicate that polyamines may play an important role in contributing to the antioxidant defense function in plants. Our findings suggest that facilitate the improvement of stress tolerance of crop plants.

  • PDF