• Title/Summary/Keyword: H-space-c-space.H-convex

Search Result 14, Processing Time 0.026 seconds

INTRODUCTION OF T -HARMONIC MAPS

  • Mehran Aminian
    • The Pure and Applied Mathematics
    • /
    • v.30 no.2
    • /
    • pp.109-129
    • /
    • 2023
  • In this paper, we introduce a second order linear differential operator T□: C (M) → C (M) as a natural generalization of Cheng-Yau operator, [8], where T is a (1, 1)-tensor on Riemannian manifold (M, h), and then we show on compact Riemannian manifolds, divT = divTt, and if divT = 0, and f be a smooth function on M, the condition T□ f = 0 implies that f is constant. Hereafter, we introduce T-energy functionals and by deriving variations of these functionals, we define T-harmonic maps between Riemannian manifolds, which is a generalization of Lk-harmonic maps introduced in [3]. Also we have studied fT-harmonic maps for conformal immersions and as application of it, we consider fLk-harmonic hypersurfaces in space forms, and after that we classify complete fL1-harmonic surfaces, some fLk-harmonic isoparametric hypersurfaces, fLk-harmonic weakly convex hypersurfaces, and we show that there exists no compact fLk-harmonic hypersurface either in the Euclidean space or in the hyperbolic space or in the Euclidean hemisphere. As well, some properties and examples of these definitions are given.

VISCOSITY APPROXIMATION METHODS FOR NONEXPANSIVE SEMINGROUPS AND MONOTONE MAPPPINGS

  • Zhang, Lijuan
    • East Asian mathematical journal
    • /
    • v.28 no.5
    • /
    • pp.597-604
    • /
    • 2012
  • Let C be a nonempty closed convex subset of real Hilbert space H and F = $\{S(t):t{\geq}0\}$ a nonexpansive self-mapping semigroup of C, and $f:C{\rightarrow}C$ is a fixed contractive mapping. Consider the process {$x_n$} : $$\{{x_{n+1}={\beta}_nx_n+(1-{\beta}_n)z_n\\z_n={\alpha}_nf(x_n)+(1-{\alpha}_n)S(t_n)P_C(x_n-r_nAx_n)$$. It is shown that {$x_n$} converges strongly to a common element of the set of fixed points of nonexpansive semigroups and the set of solutions of the variational inequality for an inverse strongly-monotone mapping which solves some variational inequality.

SOME RESULTS OF p-BIHARMONIC MAPS INTO A NON-POSITIVELY CURVED MANIFOLD

  • HAN, YINGBO;ZHANG, WEI
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1097-1108
    • /
    • 2015
  • In this paper, we investigate p-biharmonic maps u : (M, g) $\rightarrow$ (N, h) from a Riemannian manifold into a Riemannian manifold with non-positive sectional curvature. We obtain that if ${\int}_M|{\tau}(u)|^{{\alpha}+p}dv_g$ < ${\infty}$ and ${\int}_M|d(u)|^2dv_g$ < ${\infty}$, then u is harmonic, where ${\alpha}{\geq}0$ is a nonnegative constant and $p{\geq}2$. We also obtain that any weakly convex p-biharmonic hypersurfaces in space formN(c) with $c{\leq}0$ is minimal. These results give affirmative partial answer to Conjecture 2 (generalized Chen's conjecture for p-biharmonic submanifolds).

MODIFIED KRASNOSELSKI-MANN ITERATIONS FOR NONEXPANSIVE MAPPINGS IN HILBERT SPACES

  • Naidu, S.V.R.;Sangago, Mengistu-Goa
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.753-762
    • /
    • 2010
  • Let K be a nonempty closed convex subset of a real Hilbert space H. Let T : K $\rightarrow$ K be a nonexpansive mapping with a nonempty fixed point set Fix(T). Let f : K $\rightarrow$ K be a contraction mapping. Let {$\alpha_n$} and {$\beta_n$} be sequences in (0, 1) such that $\lim_{x{\rightarrow}0}{\alpha}_n=0$, (0.1) $\sum_{n=0}^{\infty}\;{\alpha}_n=+{\infty}$, (0.2) 0 < a ${\leq}\;{\beta}_n\;{\leq}$ b < 1 for all $n\;{\geq}\;0$. (0.3) Then it is proved that the modified Krasnoselski-Mann iterative sequence {$x_n$} given by {$x_0\;{\in}\;K$, $y_n\;=\;{\alpha}_{n}f(x_n)+(1-\alpha_n)x_n$, $n\;{\geq}\;0$, $x_{n+1}=(1-{\beta}_n)y_n+{\beta}_nTy_n$, $n\;{\geq}\;0$, (0.4) converges strongly to a point p $\in$ Fix(T} which satisfies the variational inequality

    $\leq$ 0, z $\in$ Fix(T). (0.5) This result improves and extends the corresponding results of Yao et al[Y.Yao, H. Zhou, Y. C. Liou, Strong convergence of a modified Krasnoselski-Mann iterative algorithm for non-expansive mappings, J Appl Math Com-put (2009)29:383-389.