• Title/Summary/Keyword: H-field measurement

Search Result 456, Processing Time 0.032 seconds

A Revaluation of Direct Normal Insolation Data by Field Measurement in Korea (실측에 의한 국내 법선면 직달일사량 자원의 재평가)

  • Jo, D.K.;Chun, I.S.;Lee, S.M.;Lee, T.K.;Kang, Y.H.;Auh, C.M.
    • Solar Energy
    • /
    • v.20 no.2
    • /
    • pp.31-42
    • /
    • 2000
  • Since the direct normal insolation is a main factor for designing any focusing solar system, it is necessary to evaluate its characteristics all over the country. We have begun collecting direct normal insolation data since December 1990 at 16 different locations and considerable effort has been made for constructing a standard value from measured data at each station. KIER(Korea Institute of Energy Research)'s new data will be extensively used by concentrating system users or designers as well as by research institutes. From the results, we can conclude that 1) Yearly mean $4,576kcal/m^2.day$ of the direct normal insolation was evaluated for clear day all over 16 areas in Korea. 2) Clear day's direct normal insolation of spring and summer were $4,710kcal/m^2.day$ and $4,960kcal/m^2.day$, and for fall and winter their values were $4,484kcal/m^2.day$ and $4,151kcal/m^2.day$ respectively. So, spring and summer were higher, and fall and winter were lower than the yearly mean value.

  • PDF

Verification of drag-reduction capabilities of stiff compliant coatings in air flow at moderate speeds

  • Boiko, Andrey V.;Kulik, Victor M.;Chun, Ho-Hwan;Lee, In-Won
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.242-253
    • /
    • 2011
  • Skin frictional drag reduction efficiency of "stiff" compliant coating was investigated in a wind tunnel experiment. Flat plate compliant coating inserts were installed in a wind tunnel and the measurements of skin frictional drag and velocity field were carried out. The compliant coatings with varying viscoelastic properties had been prepared using different composition. In order to optimize the coating thickness, the most important design parameter, the dynamic viscoelastic properties had been determined experimentally. The aging of the materials (variation of their properties) during half a year was documented as well. A design procedure proposed by Kulik et al. (2008) was applied to get an optimal value for the coating thickness. Along with the drag measurement using the strain balance, velocity and pressure were measured for different coatings. The compliant coatings with the thickness h = 7mm achieved 4~5% drag reduction within a velocity range 30~40 m/s. The drag reduction mechanism of the attenuation of turbulence velocity fluctuations due to the compliant coating was demonstrated. It is envisioned that larger drag reduction effect is obtainable at higher flow velocities for high speed trains and subsonic aircrafts.

A Study on Fatigue Analysis of Dropper for High Speed Electric Railway (고속선용 드롭퍼 피로분석 연구)

  • Lee, Tae-Hoon;Park, Ki-Bum;Jeon, Yong-Joo;Ryu, Young-Tae;Cho, Yong-Hyeon;Lee, Ki-Won;Park, Young
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1445-1453
    • /
    • 2009
  • The dropper supports the contact wire and is attached using thimbles and various types of dropper clips on the catenary. Consequently droppers are subject to mechanical loads from friction and buckling during the passage of pantographs. If such mechanical loads occur repeatedly with every passing pantograph, it is possible that the dropper wire will break due to fatigue. In order to investigate failure causes for the high speed line dropper, theoretical analyses and experiments have been carried out. In this paper, mathematical formulas are derived for the prediction of the dropper static load. The measured values in the experiment agree well with the theoretical predictions. And, we performed measurement for the variation of forces on the dropper. To analyze the cause analysis on fracture of dropper wire, we have conducted experiment such as fatigue test of new products, SEM(Scanning Electron Microscope) and EDX(Energy Dispersive X-ray) of fractured specimens in the field. Finally, we also measured the vertical displacements when a pantograph moved at 300km/h under the Korean high speed overhead line.

  • PDF

Effect of Al Doping on the Properties of ZnO Nanorods Synthesized by Hydrothermal Growth for Gas Sensor Applications

  • Srivastava, Vibha;Babu, Eadi Sunil;Hong, Soon-Ku
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.399-405
    • /
    • 2020
  • In the present investigation we show the effect of Al doping on the length, size, shape, morphology, and sensing property of ZnO nanorods. Effect of Al doping ultimately leads to tuning of electrical and optical properties of ZnO nanorods. Undoped and Al-doped well aligned ZnO nanorods are grown on sputtered ZnO/SiO2/Si (100) pre-grown seed layer substrates by hydrothermal method. The molar ratio of dopant (aluminium nitrate) in the solution, [Al/Zn], is varied from 0.1 % to 3 %. To extract structural and microstructural information we employ field emission scanning electron microscopy and X-ray diffraction techniques. The prepared ZnO nanorods show preferred orientation of ZnO <0001> and are well aligned vertically. The effects of Al doping on the electrical and optical properties are observed by Hall measurement and photoluminescence spectroscopy, respectively, at room temperature. We observe that the diameter and resistivity of the nanorods reach their lowest levels, the carrier concentration becomes high, and emission peak tends to approach the band edge emission of ZnO around 0.5% of Al doping. Sensing behavior of the grown ZnO nanorod samples is tested for H2 gas. The 0.5 mol% Al-doped sample shows highest sensitivity values of ~ 60 % at 250 ℃ and ~ 50 % at 220 ℃.

Prediction and Measurement of Induction Phenomena in the 765 kV Double Circuit Transmission Line operated with two voltage grades (765 kV 송전선로에서의 이종 전압등급 병행 운전시의 유도현상 예측 및 실측 결과)

  • Kwak, J.S.;Kang, Y.W.;Shim, E.B.;Jeon, M.R.;Woo, J.W.;Bang, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.208-211
    • /
    • 2003
  • The western route of KEPCO's 765 kV transmission line has been tentatively operating as 345 kV voltage before commercial operation. KEPCO decided to operate the 765 kV line for commercial operation after completing the test operation of 765 kV substation in 2002. In the process of energizing the line as 765 kV voltage, double circuit transmission line will be operated with two voltage grades of 765 kV and 345 kV. As the earthing switches are installed on both ends of the line, electrostatic induction voltage and electromagnetic induction current were calculated prior to the line energizing in order to confirm the ratings. The induced voltage and current are important for the maintenance of the parallel circuit. This paper presents the simulation results of electrical phenomena such as electrostatic induction voltage and electromagnetic induction current from the parallel line. The transmission line was modeled by EMTP (Electro-Magnetic Transient Program). The simulation results were compared with the measured results at the field.

  • PDF

Imputation Model for Link Travel Speed Measurement Using UTIS (UTIS 구간통행속도 결측치 보정모델)

  • Ki, Yong-Kul;Ahn, Gye-Hyeong;Kim, Eun-Jeong;Bae, Kwang-Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.63-73
    • /
    • 2011
  • Travel speed is an important parameter for measuring road traffic. UTIS(Urban Traffic Information System) was developed as a mobile detector for measuring link travel speeds in South Korea. After investigation, we founded that UTIS includes some missing data caused by the lack of probe vehicles on road segments, system failures and etc. Imputation is the practice of filling in missing data with estimated values. In this paper, we suggests a new model for imputing missing data to provide accurate link travel speeds to the public. In the field test, new model showed the travel speed measuring accuracy of 93.6%. Therefore, it can be concluded that the proposed model significantly improves travel speed measuring accuracy.

An Analysis of Electric Noise of Railway Electric Inspection Car Measurement Module (종합검측차 검측모듈의 차상노이즈 분석)

  • Park, Young;Kwon, Sam-Young;Cho, Chul-Jin;Chae, Won Kyu;Lee, Jae-Hyeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.812-816
    • /
    • 2015
  • Recently, various monitoring systems have been proposed to detect interaction performance between trains and infrastructure, as well as, various techniques to improve the accuracy and performance of such inspection equipment in high speeds. Especially, it is important to predict electric noise of high speed trains due to its effect on detection system accuracy. In this paper, we analyze various types of electrical noise in electric vehicles to improve the accuracy of the detection module of the inspection car. In detail, analysis of electric noise of high speed railway is performed as a function of speed based on field tests that were carried out by HEMU-430X (Highspeed Eletric Multiple Unit - 430 km/h eXperiment).

One-step Physical Method for Synthesis of Cu Nanofluid in Ethylene Glycol

  • Bac, L.H.;Yun, K.S.;Kim, J.S.;Kim, J.C.;Rhee, C.K.
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.464-469
    • /
    • 2010
  • The Cu nanofluid in ethylene glycol was prepared by electrical explosion of wire, a novel one-step method. The X-ray diffraction, field emission scanning electron microscope and transmission electron microscope were used to study the properties of Cu nanoparticles. The results showed that the nanoparticles were consisted of pure face-centered cubic structure and near spherical shape with average grain size of 65 nm. Ultraviolet-visible spectroscopy (UV-Vis) confirmed Cu nanoparticles with a single absorbance peak of Cu surface plasmon resonance band at 600 nm. The nanofluid was found to be stable due to high positive zeta potential value, +51 mV. The backscattering level of nanofluid in static stationary was decreased about 2% for 5 days. The thermal conductivity measurement showed that Cu-ethylene glycol nanofluid with low concentration of nanoparticles had higher thermal conductivity than based fluid. The enhancement of thermal conductivity of nanofluid at a volume fraction of 0.1% was approximately 5.2%.

Thermal and Structural Properties of Elastic Epoxy According to Content Changes of Elastomer (엘라스토머 함량 변화에 아른 탄성에폭시의 열적, 구조적 특성)

  • Min, J.Y.;Lee, K.Y.;Lee, K.W.;Choi, Y.S.;Park, D.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.461-464
    • /
    • 2004
  • In this paper, the elastic epoxy added elastomer having viscoelasticity to existing epoxy was measured thermal, structural properties through TGA(Thermogravimetric Analysis) and FESEM(Field Emission Scanning Electron Microscope). Specimens were made of dumbbell forms by the ratio of 5[phr], 10[phr], 15[phr], and 20[phr] by regulation with elastomer contents. The measurement temperature dimensions of TGA were $0[^{\circ}C]\;to\;800[^{\circ}C]$, and rising temperature was $5[^{\circ}C/min]$. And we observed structure through FESEM at the magnification of 1000times with the voltage of 15[kV] after breaking by quenching specimens. As thermal analysis results, we could know that thermal and structural properties was improved quantity according to decrease of elastomer contents. In general, thermal, structural properties of 15[phr] was excellent among the specimens.

  • PDF

Application of Principle Component Analysis and Measurement of Ultra wideband PD signal for Identification of PD sources in Air (기중부분방전원 식별을 위한 광대역 부분방전신호의 측정 및 주성분분석기법의 적용)

  • Lee, K.W.;Kim, M.Y.;Park, D.W.;Shim, J.B.;Chang, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.505-506
    • /
    • 2006
  • PD(partial discharge) occurred from variable PD sources in air may be the cause of breakdown in high voltage equipment which affect huge outage in power system. Identification and localization of PD sources is very important for engineer to cope with huge accident beforhand. PD phenomena can be detected by acoustic emission sensor or electromagnetic sensor like antenna. This paper has investigated the identification method using PCA(principal component analysis) for the PD signals from variable PD sources, for which the electric field distribution and PD inception voltages were simulated by using commercial FEM program. PD signals was detected by ultra wideband antenna. Their own features were extracted as the frequency coefficients transformed with FFT(fast fourier transform) and used to obtain independent pincipal components of each PD signals.

  • PDF