• Title/Summary/Keyword: H adsorption

Search Result 2,164, Processing Time 0.037 seconds

Development of Analysis Condition and Detection of Volatile Compounds from Cooked Hanwoo Beef by SPME-GC/MS Analysis

  • Ba, Hoa Van;Oliveros, Maria Cynthia;Ryu, Kyeong-Seon;Hwang, In-Ho
    • Food Science of Animal Resources
    • /
    • v.30 no.1
    • /
    • pp.73-86
    • /
    • 2010
  • The current study was designed to optimize solid phase microextraction (SPME)-GC-MS conditions for extraction and analysis of volatile components for Hanwoo beef and to establish a tentative database of flavor components. Samples were taken from Hanwoo longissimus muscle (30 mon old steer, $1^+B$ carcass grade) at 24 h postmortem. Results indicated that the optimum adsorption time for $75{\mu}m$ CAR/PDMS fiber was 60 min at $60^{\circ}C$. Thermal cleaning at $250^{\circ}C$ for 60 min was the best practice for decontamination of the fiber. A short analysis program with a sharp oven temperature ramp resulted in a better resolution and higher number of measurable volatile components. With these conditions, 96 volatile compounds were identified with little variation including 22 aldehydes, 8 ketones, 31 hydrocarbons, 12 alcohols, 8 nitrogen- and sulfurcontaining compounds, 5 pyrazines and 10 furans. A noticeable observation was the high number of hydrocarbons, aldehydes, ketones, alcohols and 2-alkylfurans which were generated from lipid decomposition especially the oxidation and degradation of unsaturated and saturate fatty acids. This implies that these compounds can be candidates for flavor specification of highly marbled beef such as Hanwoo flavor.

Effect of Silicate Ions on the Hydration of 4CaO · Al2O3 · Fe2O3 with Gypsum

  • You, Kwang-Suk;Ahn, Ji-Whan;Kim, Hwan;Goto, Seishi
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.642-646
    • /
    • 2004
  • Na$_2$Si$_2$O$_{5}$ added to the solution affects the hydration of 4CaOㆍAl$_2$O$_3$ㆍFe$_2$O$_3$ with calcium sulfate. The reaction between 4CaOㆍAl$_2$O$_3$ Fe$_2$O$_3$and CaSO$_4$ㆍ 2$H_2O$ decrease with increasing amount of Na$_2$Si$_2$O$_{5}$ in solution, owing to low hydraulic reactivity of 4CaOㆍAl$_2$O$_3$ㆍFe$_2$O$_3$by the adsorption of silicate ions on the surface of 4CaOㆍAl$_2$O$_3$ㆍ Fe$_2$O$_3$ particles. The dissolution rate of 4CaOㆍAl$_2$O$_3$ㆍ Fe$_2$O$_3$ particles deceased with the increase of the concentration of silicate ion in solution. When the 4CaOㆍAl$_2$O$_3$ㆍFe$_2$O$_3$ particles was hydrated in gypsum - Na$_2$Si$_2$O$_{5}$ solution, the hydration was retarded and the rate could not discriminate between formation of ettringite and that of monosulfate, and it stopped in high concentration of silicate ions. However, silicate ion did not any effect on the dissolution rate of gypsum.ypsum.

A Study for the Removal of Phosphorous Using Coated Exfoliated Vermiculite (인 제거를 위한 코팅 발포질석 적용 가능성 연구)

  • Kim, Seogku;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.5-13
    • /
    • 2014
  • In this study, exfoliated vermiculite (EV) coated with glycerol was tested for its abiility to remove phosphorus in aqueous solution. The glycerol modified vermiculite (GS) was prepared with EV/glycerol ratio of 1/4 where glycerol contained 4 mol% $H_2SO_4$ and heated until designated temperature. GS heated at $380^{\circ}C$ showed that the specific surface area was $53.1m^2/g$ and mass loss due to oxidation of carbon was maximum from TGA analysis. Removal of phosphorus using GS heated at $380^{\circ}C$ was well explained by Langmuir isotherm model and maximum sorption capacity of 714.3 mg/kg is comparable or greater than those of other clay orignated sorbents for phosphorus.

Synthesis of Alginate-derived Polymeric Surfactants (알지네이트계 고분자 계면활성제의 합성)

  • 강현아
    • KSBB Journal
    • /
    • v.15 no.4
    • /
    • pp.375-379
    • /
    • 2000
  • Alginate derivatives possessing various lengths of alkyl amine (C8, C12, C16) chain were prepared by oxidation followed by reductive amination of alginate and the products were characterized by spectral analysis. The surface tension critical micelle concentration (c. m. c) and solubility of a hydrophobic compound azobenzene were examined. Series of synthesized alginate-derived polymeric surfactants(APSs) reduced the surface tension. The dissolving capacity of APSs toward azobenzene was about half that of SDS. In order to investigate the capacity of metal adsorption Co and Pb were selected as a representative metal. The overall removal efficiency of APSs were high compared with that of alginate at pH 3.5 and 7 respectively. Major mechanism of the heavy metal removal is the complex of metal with carboxyl group.

  • PDF

Phosphorus Removal in Pilot Plant Using Biofilm Filter Process from Farm Wastewater

  • Shin, Sung-Euy;Choi, Du-Bok;Lee, Choon-Boem;Cha, Wol-Suk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.325-331
    • /
    • 2006
  • Various environmental conditions affecting total phosphorus removal from farm wastewater in a biofilm filter process were investigated using loess balls and Chromobacterium LEE-38 at a pilot plant. When Chromobacterium LEE-38 was used, the removal efficiency of total phosphorous was approximately 10- or 5-fold higher than that of Acinetobacter CHA-2-14 or Acinetobacter CHA-4-5, respectively. When a loess ball of $11{\sim}14mm$ manufactured at a $960^{\circ}C$ calcining temperature was used, the removal efficiency of total phosphorous was 90.0%. When 70% of the volume fraction was used, the maximum efficiency of total phosphorus removal was 93.1%. Notably, when the initial pH was in the range of 6.0 to 8.0, the maximum removal efficiency of total phosphorus was obtained after 30 days. When the operating temperature was in the range of 30 to $55^{\circ}C$, the maximum removal efficiencies of total phosphorus, 95.6 to 94.6%, were obtained. On the other hand, at operating temperatures below $20^{\circ}C$ or above $40^{\circ}C$, the removal efficiency of total phosphorous decreased. Among the various processes, biofilm filter process A gave the highest removal efficiency of 96.4%. Pilot tests of total phosphorus removal using farm wastewater from the biofilm filter process A were carried out for 60 days under optimal conditions. When Acinetobacter sp. Lee-11 was used, the average removal efficiency in the p-adsorption area was only 32.5%, and the removal efficiencies of chemical oxygen demand (COD) and biological oxygen demand (BOD) were 56.7 and 62.5%, respectively. On the other hand, when Chromobacterium LEE-38 was used, the average removal efficiency was 95.1%, and the removal efficiencies of COD and BOD were 91.3 and 93.2%, respectively.

Assessment on the Transition of Arsenic and Heavy Metal from Soil to Plant according to Stabilization Process using Limestone and Steelmaking Slag (석회석과 제강슬래그를 이용한 오염토양 안정화에 따른 비소 및 중금속의 식물체 전이도 평가)

  • Koh, Il-Ha;Lee, Sang-Hwan;Lee, Won-Seok;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.63-72
    • /
    • 2013
  • This study estimated stabilization efficiency of As and heavy metal contaminated agricultural soil in abandoned mine through pot experiment. Also contaminants uptake of plant (lettuce) was compared as function of amendment (limestone, steelmaking slag and the mixture of these) addition. In soil solution analysis, concentration of contaminants in soil solutions which added limestone or steelmaking slag were lower than that of the mixture. Especially in As analysis, concentration with 5% (wt) addition of steelmaking slag showed the lowest value among those with other amendments. This seems that As stabilization happens through Fe adsorption during precipitation of Fe by pH increasing. Leachability of As in stabilized soil by TCLP was represented similar result with soil solution analysis. However leachability of heavy metals in stabilized soil was similar with that of non-stabilized soil due to dissolution of alkali precipitant by weak acid. Contaminants uptake rate by plant was also lower when limestone or steelmaking slag was used. However this study revealed that concentration of contaminants in soil solution didn't affect to the uptake rate of plant directly. Because lower $R^2$ (coefficient of determination) was represented in linear regression analysis between soil solution and plant.

A Study on the Removal of Chloro-Phenols by Photocatalytic Oxidation (광촉매(光觸媒) 산화(酸化) 반응(反應)을 이용한 클로로페놀 분해(分解)에 관한 연구(硏究))

  • Lee, Sang Hyup;Park, Ju Seok;Park, Chung Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.4
    • /
    • pp.87-96
    • /
    • 1995
  • The Electron/Hole Pair is generated when the activation energy produced by ultraviolet ray illuminates to the semiconductor and OH- ion produced by water photocleavage reacts with positive Hole. As a results, OH radical acting as strong oxidant is generated and then Photocatalytic oxidation reaction occurs. The photocatalytic oxidation can oxidate the non-degradable and hazardous organic substances such as pesticides and aromatic materials easier, safer and shorter than conventional water treatment process. So in this study, many factors influencing the oxidation of chlorophenols, such as inorganic electrolytes addition, change of oxygen and nitrogen atmosphere, temperature, pH, oxygen concentration, chlorophenol concentration, were throughly examined. According to the experiments observations, it is founded that the rate of chlorophenol oxidation follows a first-order reaction and the modified Langmuir-Hinshelwood relationship. And the photocatalytic oxidation occurs only when activation energy acting as Electron/Hole generation, oxygen acting as electron acceptor to prevent Electron/Hole recombination, $TiO_2$ powder acting as photocatalyst are present. The effects of variation of dissolved oxygen concentration, temperature and inorganic electrolytes concentration on 2-chlorophenol oxidation are negligible. And the lower the organic concentration, the higher the oxidation efficiency becomes. Therefore, the photocatalytic oxidation is much effective to oxidation of hazardous substances at very low concentration. The oxidation is effective in the range of 0.1 g/L-10 g/L of $TiO_2$. Finally when the ultra-violet ray is illuminated to $TiO_2$, the surface characteristics of $TiO_2$ change and Adsorption/Desorption reaction on $TiO_2$ surface occurs.

  • PDF

LEED I/V Curve Analysis of O/Fe(100) and MgO/Fe(100) System (O/Fe(100) and MgO/Fe(100) 계의 LEED I/V curve 분석)

  • Seo, J.K.;Kim, S.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • We have analyzed the atomic structure of O/Fe(100) and interface atomic structure of MgO deposited on Fe(100) surface using LEED I/V curve analysis. As the O adsorption on the Fe(100) surface, the first substrate interlayer distance is expanded by up to 16%. For 1ML MgO deposited on Fe(100) surface, the oxygen ions of MgO are located on-top of the Fe atoms, the interlayer distance at the MgO/Fe interface are expanded. From the AIA(average intensity mixing approximation) calculation, we find the interface structure of monolayer MgO on Fe(100) system has the two interface structure with MgO/FeO/Fe(100) and MgO/Fe(100). This supports the results of EELS experiment that shown existence of stretched FeO layer and coexistance of MgO/FeO/Fe(100) and MgO/Fe(100) structure.

Removal of Divalent Heavy Metal Ions by Na-P1 Synthesized from Jeju Scoria (제주 스코리아로부터 합성된 Na-P1 제올라이트에 의한 2가 중금속 이온의 제거특성)

  • Kam, Sang-Kyu;Hyun, Sung-Su;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.20 no.10
    • /
    • pp.1337-1345
    • /
    • 2011
  • The removal performances of divalent heavy metal ions ($Pb^{2+}$, $Cu^{2+}$, $Cd^{2+}$, $Sr^{2+}$ and $Mn^{2+}$) were studied using the Na-P1 zeolite synthesized from Jeju scoria in the batch and continuous fixed column reactor. The uptakes of heavy metal ions by synthetic Na-P1 zeolite decreased in the order of $Pb^{2+}$ > $Cu2^{2+}$ > $Cd^{2+}$ > $Sr^{2+}$ > $Mn^{2+}$ based on the selectivity of each ion to ionic exchange site of Na-P1 zeolite for single and mixed solutions in batch or continuous fixed column reactor. For mixed solution, each heavy metal ion uptake was lower than that in single solution, and especially the uptake for $Mn^{2+}$ decreased greatly. In batch reactor, the uptakes of heavy metal ions by synthetic Na-P1 zeolite were described by Freundlich or Langmuir equation, but they followed the former better than the latter. In continuous fixed column reactor, the maximum ion exchange capacity obtained for each of heavy metal ions, was about 90----- of that in batch reactor. The uptakes of heavy metal ions by synthetic Na-P1 zeolite increased with the increase of initial heavy metal concentration and solution pH, and the decrease of the amount and particle size of synthetic zeolite.

Biomimetic sequestration of $CO_2$ and reformation to $CaCO_3$ using bovine carbonic anhydrase immobilized on SBA-15 (생체모방공학을 이용한 bovine carbonic anhydrase를 SBA-15에 고정화하여 이산화탄소분리와 재구성된 $CaCO_3$ 연구)

  • Vinoba, Mari;Kim, Dae-Hoon;Lim, Kyoung-Soo;Jeong, Soon-Kwan;Alagar, Muthukaruppan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.495-499
    • /
    • 2010
  • The biocatalytic capture of $CO_2$, and its precipitationas $CaCO_3$, over bovine carbonic anhydrase (BCA) immobilized on a pore-expanded SBA-15 support was investigated. SBA-15 was synthesized using TMB as a pore expander, and the resulting porous silica was characterized by XRD, BET, IR, and FE-SEM analysis. BCA was immobilized on SBA-15 through various approaches, including covalent attachment (BCA-CA), adsorption (BCA-ADS), and cross-linked enzyme aggregation (BCA-CLEA). The immobilization of BCA on SBA-15 was confirmed by the presence of zinc metal in the EDXS analysis. The effects of pH, temperature, storage stability, and reusability on the biocatalytic performance of BCA were characterized by examining para-nitrophenyl acetate (p-NPA) hydrolysis. The $K_{cat}/K_m$ values for p-NPA hydrolysis were 740.05, 660.62, and $680.11M^{-1}s^{-1}$, respectively, where as $K_{cat}/K_m$ for free BCA was $873.76M^{-1}s^{-1}$. The amount of $CaCO_3$ precipitate was measured quantitatively using anion-selective electrode and was found to be 12.41, 11.82, or 11.28 mg $CaCO_3$/mg for BCA-CLEA, BCA-ADS, or BCA-CA, respectively. The present results indicate that the immobilized BCA-CLEA, BCA-ADS, and BCA-CA are green materials, and are tunable, reusable, and promising biocatalysts for $CO_2$ sequestration.

  • PDF