DOI QR코드

DOI QR Code

A Study for the Removal of Phosphorous Using Coated Exfoliated Vermiculite

인 제거를 위한 코팅 발포질석 적용 가능성 연구

  • Kim, Seogku (Department of Environmental Engineering, Korea Institute of Construction Technoloy) ;
  • Lee, Taeyoon (Department of Environmental Engineering, Pukyong National University)
  • Received : 2014.06.29
  • Accepted : 2014.09.15
  • Published : 2014.12.01

Abstract

In this study, exfoliated vermiculite (EV) coated with glycerol was tested for its abiility to remove phosphorus in aqueous solution. The glycerol modified vermiculite (GS) was prepared with EV/glycerol ratio of 1/4 where glycerol contained 4 mol% $H_2SO_4$ and heated until designated temperature. GS heated at $380^{\circ}C$ showed that the specific surface area was $53.1m^2/g$ and mass loss due to oxidation of carbon was maximum from TGA analysis. Removal of phosphorus using GS heated at $380^{\circ}C$ was well explained by Langmuir isotherm model and maximum sorption capacity of 714.3 mg/kg is comparable or greater than those of other clay orignated sorbents for phosphorus.

본 연구에서는 발포질석을 글리세롤로 코팅하여 인에 대한 흡착력을 높인 발포질석 흡착제 제조 및 인 제거능력을 평가하였다. 발포질석과 4 mol%의 황산을 포함한 글리세롤을 1:4 비율로 혼합 후 380, 580, $780^{\circ}C$로 가열하여 다공성 탄소층을 발포질석 표면에 부착하였다. $380^{\circ}C$로 가열한 질석의 경우 비표면적인 $53.1m^2/g$을 나타내었으며, TGA 분석을 통해 탄소성분의 산화로 인한 질량손실이 가장 큰 것으로 분석되었다. $380^{\circ}C$로 제조된 코팅 발포질석을 이용한 수용액 속의 인 제거를 흡착모델에 적용해보니 Langmuir 모델에 더 적합하며 여기로부터 구한 최대제거량은 714.3 mg/kg으로 기존 점토광물을 이용한 인 흡착연구결과보다 더 흡착용량이 뛰어난 것을 알 수 있었다.

Keywords

References

  1. Arias, M., Da Silva-Carballal, J., Garcia-Rio, L., Mejuto, J. and A. Nunez, A. (2006), Retention of phosphorus by iron and aluminum-oxides-coated quartz particles, Journal of Colloid and Interface Science, Vol. 295, No. 1, pp. 65-70. https://doi.org/10.1016/j.jcis.2005.08.001
  2. Huo, X., Wu, L., Liao, L., Xia, Z. and Wnag, L. (2012), The effect of interlayer cations on the expansion of vermiculite, Powder Technology, Vol. 224, pp. 241-246. https://doi.org/10.1016/j.powtec.2012.02.059
  3. Karimaian, K. A., Amrane, A., Kazemian, H., Panahi, R. and Zarrabi, M. (2013), Retention of phosphorous ions on natural and engineered waste pumice: Characterization, equilibrium, competing ions, regeneration, kinetic, equilibrium and thermodynamic study, Applied Surface Science, Vol. 284, pp. 419-431. https://doi.org/10.1016/j.apsusc.2013.07.114
  4. Lee, H. Y., Lim, J. E., Lee, S. S. and Ok, Y. S. (2012), Lead biosorption by chestnut shell and oak sawdust in aqueous solution using thermodynamic equilibrium model, Journal of the Environment, Vol. 9, No. 1, pp. 15-26 (in Koreans).
  5. Lee, J. J. (2012), Adsorption equilibrium, kinetics and thermodynamics studies of malachite green using zeolite, Clean Technology, Vol. 18, No. 1, pp. 76-82 (in Korean). https://doi.org/10.7464/ksct.2012.18.1.076
  6. Lee, S. H. (2009), An energy characteristics of carbonization residue produced from sewage sludge cake, Korean Chem. Eng. Res., Vol. 47, No. 2, pp. 230-236 (in Korean).
  7. Lee, Y. H. and Yim, S. B. (2011), Adsorption removal of phosphorus from aqueous solution by olivine, Journal of Korean Society on Water Quality, Vol. 27, No. 4, pp. 516-522 (in Korean).
  8. Machado, L. C. R., Lima, F. W. F., Paniago, R., Ardisson, J. D., Sapag, K. and Lago, R. M. (2006), Polymer coated vermiculiteiron composites : Novel floatable magnetic adsorbents for water spilled contaminants, Applied Clay Science, Vol. 31, No. 3-4, pp. 207-215. https://doi.org/10.1016/j.clay.2005.07.004
  9. Marcos, C. and Rodríguez, I. (2014), Some effects of trivalent chromium exchange of thermo-exfoliated commercial vermiculite, Applied Clay Science, Vol. 90, pp. 96-100. https://doi.org/10.1016/j.clay.2013.12.032
  10. Medeiros, M., Sansiviero, M. T., Araujo, M. H. and Lago, R. M. (2009), Modification of vermiculite by polymerization and carbonization of glycerol to produce highly efficient materials for oil removal, Applied Clay Science, Vol. 45, No. 4, pp. 213-219. https://doi.org/10.1016/j.clay.2009.06.008
  11. Rout, P. R., Bhunia, P. and Dash, R. R. (2014), Modeling isotherms, kinetics and understanding the mechanism of phosphate adsorption onto a solid waste: Ground burnt patties, Journal of Environmental Chemical Engineering, Vol. 2, No. 3, pp. 1331-1342. https://doi.org/10.1016/j.jece.2014.04.017
  12. Shin, G. W., Choo, Y. D., Kim, K. Y., Ryu, H. D. and Lee, S. I. (2011), Evaluation of lanthanum(III)-loess composite as anadsorbent for phosphorus removal, Journal of Korean Society of Environmental Engineers, Vol. 33, No. 2, pp. 143-148 (in Korean). https://doi.org/10.4491/KSEE.2011.33.2.143
  13. Yaghi, N. and Hartikainen, H. (2013), Enhancement of phosphorus sorption onto light expanded clay aggregates by means of aluminum and iron oxide coatings, Chemosphere, Vol. 93, No. 9, pp. 1879-1886. https://doi.org/10.1016/j.chemosphere.2013.06.059
  14. Yang, S., Ding, D., Zhao, Y., Huang, W., Zhang, Z., Lei, Z. and Yang, Y. (2013), Investigation of phosphorus adsorption from aqueous solution using kanuma mud : behaviors and mechanisms, Journal of Environmental Chemical Engineering, Vol. 1, No. 3, pp. 355-362. https://doi.org/10.1016/j.jece.2013.05.016