• Title/Summary/Keyword: H Mode

Search Result 2,466, Processing Time 0.034 seconds

Background $K^+$ channel currents in WEHI-231 cells, immature B lymphocytes

  • Nam, Joo-Hyun;Woo, Ji-Eun;Kim, Tae-Jin;Uhm, Dae-Yong;Kim, Sung-Joon
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.39-39
    • /
    • 2003
  • In our previous study, WEHI-231, an immature B cell line, showed intractable increase in [C $a^{2+}$]$_{c}$ after the B-cell receptor (BCR) ligation and treatment with 2-aminoethoxydiphenylborate (2-APB), which was never observed in Bal-17, a mature B cell line (Nam et al., 2003, FEBS Lett). In this study, a whole cell voltage clamp study revealed a specific expression of a novel type of $K^{+}$ current, namely voltage-independent background-type $K^{+}$ channels (IK-bg), in WEHI-231 cells. IK-bg was dramatically increase by the application of 2-APB (50 $\square$M), which induced severe hyperpolarization of WEHI-231 from -45 ㎷ to -90 ㎷, When dialyzed with $Mg^{2+}$ and ATP-free pipette solution, a spontaneous development of IK-bg and membrane hyperpolarization were observed. IK-bg was insensitive to classical $K^{+}$ channel blockers (TEA, glibenclamide, $Ba^{2+}$(1 mM)), whereas blocked by quinine and quinidine in a voltage-dependent manner ($IC_{50}$/=6~9 $\square$M at +60㎷). Phorbol myrstate, a PKC activator, decreased the amplitude of IK-bg. Extracellular acidification (pH 6.5) slightly inhibited IK-bg. Arachidonic acid, riluzole, or hyposmotic stress could not affect the IK-bg after the full development by the intracellular dialysis with Mg-ATP-free solution. In a cell-attached mode of single channel recording from WEHI231, we found two types of voltage-independent $K^{+}$ channels with unitary conductance of 300 pS and 120 pS, respectively. Both channels showed very short mean open times and their open probabilities were increase by the application of 2-APB. In Bal-17 cells, no such $K^{+}$ current was observed in 50 cells tested. In summary, WEHI-231 immature B cells express background $K^{+}$ channels. The pharmacological properties and the large unitary conductance suggest that novel types of two-pore domain $K^{+}$ channels (2-P-K channels) might be expressed in WEHI-231, which may provide an intriguing targets of signal transduction in the immature B lymphocytes.e B lymphocytes.

  • PDF

A Study on the Contribution of Exterior Devices to Running Resistance in High-Speed Trains (고속열차 외부장치에 의한 주행저항 기여도 연구)

  • Oh, Hyuck Keun;Kwak, Minho;Kwon, Hyeok-bin;Kim, Sang-soo;Kim, Seogwon
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.4
    • /
    • pp.309-316
    • /
    • 2015
  • The contribution of exterior devices such as bogie fairings and pantographs to running resistance was estimated on the basis of coasting tests at up to 350 km/h with the help of the Korean Next Generation High speed train (HEMU-430X). In order to assess the reduction of air resistance by nose car's bogie fairing, coasting tests were conducted with a removable bogie fairing at various speed ranges. And, the contribution of the pantograph to air resistance was also estimated with coasting tests that include the pantograph's rising and descent modes. The linear regression method was used to examine decelerations from time-velocity data and the equation of resistance to motion is proposed from the deceleration data. From the aerodynamic term of the equation of resistance to motion, the contribution to air resistance by nose car's bogie fairing and pantograph was estimated. The results show that the air resistance was reduced by about 3.8% by the nose car's bogie fairing. And, the 3.9% increase of air resistance by the pantograph (open knee mode) has been found.

Impulse Trafficking in Neurons of the Mesencephalic Trigeminal Nucleus

  • Saito, Mitsuru;Kang, Young-Nam
    • International Journal of Oral Biology
    • /
    • v.31 no.4
    • /
    • pp.113-118
    • /
    • 2006
  • In the primary sensory neuron of the mesencephalic trigeminal nucleus (MTN), the peripheral axon supplies a large number of annulospiral endings surrounding intrafusal fibers encapsulated in single muscle spindles while the central axon sends only a few number of synapses onto single ${\alpha}-motoneurons({\alpha}-MNs)$. Therefore, the ${\alpha}-{\gamma}$ linkage is thought to be very crucial in the jaw-closing movement. Spike activity in a ${\gamma}-motoneuron\;({\gamma}-MN)$ would induce a large number of impulses in single peripheral axons by activating many intrafusal fibers simultaneously, subsequently causing an activation of ${\alpha}-MNs$ in spite of the small number of synapses. Thus, the activity of ${\gamma}-MNs$ may be vital for modulation of jaw-closing movements. Independently of such a spindle activity modulated by ${\gamma}-MNs$, somatic depolarization in MTN neurons is known to trigger the oscillatory spike activity. Nevertheless, the trafficking of these spikes arising from the two distinct sources of MTN neurons is not well understood. In this short review, switching among multiple functional modes of MTN neurons is discussed. Subsequently, it will be discussed which mode can support the ${\alpha}-{\gamma}$ linkage. In our most recent study, simultaneous patch-clamp recordings from the soma and axon hillock revealed a spike-back-propagation from the spike-initiation site in the stem axon to the soma in response to a somatic current pulse. The persistent $Na^+$ current was found to be responsible for the spike-initiation in the stem axon, the activation threshold of which was lower than those of soma spikes. Somatic inputs or impulses arising from the sensory ending, whichever trigger spikes in the stem axon first, would be forwarded through the central axon to the target synapse. We also demonstrated that at hyperpolarized membrane potentials, 4-AP-sensitive $K^+$ current ($IK_{4-AP}$) exerts two opposing effects on spikes depending on their origins; the suppression of spike initiation by increasing the apparent electrotonic distance between the soma and the spike-initiation site, and the facilitation of axonal spike invasion at higher frequencies by decreasing the spike duration and the refractory period. Through this mechanism, the spindle activity caused by ${\gamma}-MNs$ would be safely forwarded to ${\alpha}-MNs$. Thus, soma spikes shaped differentially by this $IK_{4-AP}$ depending on their origins would reflect which one of the two inputs was forwarded to the target synapses.

Study of Interaction of Native DNA with Iron(III)-(2,4-Dihydroxysalophen)chloride (천연 DNA와 2,4-디히드록시살로펜-염화철(III)과 의 상호작용 연구)

  • Azani, Mohammad-Reza;Hassanpour, Azin;Bordbar, Abdol-Khalegh
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.573-578
    • /
    • 2010
  • In this study, iron(III)-2,4-dihydroxysalophen chloride (Fe(2,4-DHSalophen)Cl), has been synthesized by combination of 2,4-dihydroxysalophen (2,4-DHSalophen) with $FeCl_2$ in a solvent system. This complex combination was characterized using UV-vis and IR spectroscopies. Subsequently, the interaction between native calf thymus deoxyribonucleic acid (ct-DNA) and Fe(2,4-DHSalophen)Cl, was investigated in 10 mM Tris/HCl buffer solution, pH 7.2, using UV-visible absorption and fluorescence spectroscopies, thermal denaturation technique and viscosity measurements. From spectrophotometric titration experiments, the binding constant of Fe(2,4-DHSalophen)Cl with ct-DNA was found to be $(1.6{\pm}0.2){\times}10^3\;M^{-1}$. The fluorescence study represents the quenching effect of Fe(2,4-DHSalophen)Cl on bound ethidium bromide to DNA. The quenching process obeys linear Stern-Volmer equation in extended range of Fe(2,4-DHSalophen)Cl concentration. Thermal denaturation experiments represent the increasing melting temperature of DNA (about $4.3^{\circ}C$) due to binding of Fe(2,4-DHSalophen)Cl. These results are consistent with a binding mode dominated by interactions with the groove of ct-DNA.

An exact finite strip for the calculation of relative post-buckling stiffness of isotropic plates

  • Ovesy, H.R.;Ghannadpour, S.A.M.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.181-210
    • /
    • 2009
  • This paper presents the theoretical developments of an exact finite strip for the buckling and initial post-buckling analyses of isotropic flat plates. The so-called exact finite strip is assumed to be simply supported out-of-plane at the loaded ends. The strip is developed based on the concept that it is effectively a plate. The present method, which is designated by the name Full-analytical Finite Strip Method in this paper, provides an efficient and extremely accurate buckling solution. In the development process, the Von-Karman's equilibrium equation is solved exactly to obtain the buckling loads and the corresponding form of out-of-plane buckling deflection modes. The investigation of thin flat plate buckling behavior is then extended to an initial post-buckling study with the assumption that the deflected form immediately after the buckling is the same as that obtained for the buckling. It is noted that in the present method, only one of the calculated out-of-plane buckling deflection modes, corresponding to the lowest buckling load, i.e., the first mode is used for the initial post-buckling study. Thus, the postbuckling study is effectively a single-term analysis, which is attempted by utilizing the so-called semi-energy method. In this method, the Von-Karman's compatibility equation governing the behavior of isotropic flat plates is used together with a consideration of the total strain energy of the plate. Through the solution of the compatibility equation, the in-plane displacement functions which are themselves related to the Airy stress function are developed in terms of the unknown coefficient in the assumed out-of-plane deflection function. These in-plane and out-of-plane deflected functions are then substituted in the total strain energy expressions and the theorem of minimum total potential energy is applied to solve for the unknown coefficient. The developed method is subsequently applied to analyze the initial postbuckling behavior of some representative thin flat plates for which the results are also obtained through the application of a semi-analytical finite strip method. Through the comparison of the results and the appropriate discussion, the knowledge of the level of capability of the developed method is significantly promoted.

Gut Microbial Metabolites Induce Changes in Circadian Oscillation of Clock Gene Expression in the Mouse Embryonic Fibroblasts

  • Ku, Kyojin;Park, Inah;Kim, Doyeon;Kim, Jeongah;Jang, Sangwon;Choi, Mijung;Choe, Han Kyoung;Kim, Kyungjin
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.276-285
    • /
    • 2020
  • Circadian rhythm is an endogenous oscillation of about 24-h period in many physiological processes and behaviors. This daily oscillation is maintained by the molecular clock machinery with transcriptional-translational feedback loops mediated by clock genes including Period2 (Per2) and Bmal1. Recently, it was revealed that gut microbiome exerts a significant impact on the circadian physiology and behavior of its host; however, the mechanism through which it regulates the molecular clock has remained elusive. 3-(4-hydroxyphenyl)propionic acid (4-OH-PPA) and 3-phenylpropionic acid (PPA) are major metabolites exclusively produced by Clostridium sporogenes and may function as unique chemical messengers communicating with its host. In the present study, we examined if two C. sporogenes-derived metabolites can modulate the oscillation of mammalian molecular clock. Interestingly, 4-OH-PPA and PPA increased the amplitude of both PER2 and Bmal1 oscillation in a dose-dependent manner following their administration immediately after the nadir or the peak of their rhythm. The phase of PER2 oscillation responded differently depending on the mode of administration of the metabolites. In addition, using an organotypic slice culture ex vivo, treatment with 4-OH-PPA increased the amplitude and lengthened the period of PER2 oscillation in the suprachiasmatic nucleus and other tissues. In summary, two C. sporogenes-derived metabolites are involved in the regulation of circadian oscillation of Per2 and Bmal1 clock genes in the host's peripheral and central clock machineries.

A Study of the China Construction Laws and BOT Policies from Overseas EPC Contractor's View (중국 건설 법률과 BOT 정책에 대한 조사 연구;해외 EPC 건설업체의 관점)

  • Choi, Jae-Ho;Park, K.R.;Yun, H.J.
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.519-522
    • /
    • 2007
  • China infrastructure construction market has huge potential for increased use of PPP/BOT mode and one of the most attractive markets of doing business. However, there are still a multitude of challenges for overseas EPC contractor to enter into the China PPP/BOT market both internally and externally. Especially, the construction legal system and relevant policies are considered at present the biggest barriers in accessing China construction market. Therefore, the main purpose of the paper is to identify the impact of the construction laws, regulations and BOT-related policies on the viability of foreign contractor-led BOT project in China. To the satisfaction of the purpose, this paper will first analyze China construction laws based on the key issues that must be tackled by foreign EPC contractor before they enter into China. This summary gives the possible contract scheme for a BOT project of interest in which foreign contractors could define the scope of works and measure the viability of the project. Finally, a case study of wastewater treatment plant BOT project in China subsequently illustrates some of the lessons learned from the foreign contractor's perspectives for successfully participating in future environmental market in China.

  • PDF

Incremental Generation of A Decision Tree Using Global Discretization For Large Data (대용량 데이터를 위한 전역적 범주화를 이용한 결정 트리의 순차적 생성)

  • Han, Kyong-Sik;Lee, Soo-Won
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.487-498
    • /
    • 2005
  • Recently, It has focused on decision tree algorithm that can handle large dataset. However, because most of these algorithms for large datasets process data in a batch mode, if new data is added, they have to rebuild the tree from scratch. h more efficient approach to reducing the cost problem of rebuilding is an approach that builds a tree incrementally. Representative algorithms for incremental tree construction methods are BOAT and ITI and most of these algorithms use a local discretization method to handle the numeric data type. However, because a discretization requires sorted numeric data in situation of processing large data sets, a global discretization method that sorts all data only once is more suitable than a local discretization method that sorts in every node. This paper proposes an incremental tree construction method that efficiently rebuilds a tree using a global discretization method to handle the numeric data type. When new data is added, new categories influenced by the data should be recreated, and then the tree structure should be changed in accordance with category changes. This paper proposes a method that extracts sample points and performs discretiration from these sample points to recreate categories efficiently and uses confidence intervals and a tree restructuring method to adjust tree structure to category changes. In this study, an experiment using people database was made to compare the proposed method with the existing one that uses a local discretization.

A Research on PV-connected ESS dissemination strategy considering the effects of GHG reduction (온실가스감축효과를 고려한 태양광 연계형 에너지저장장치(ESS) 보급전략에 대한 연구)

  • Lee, Wongoo;KIM, Kang-Won;KIM, Balho H.
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.94-100
    • /
    • 2016
  • ESS(Energy Storage System) is an important source that keeps power supply stable and utilizes electricity efficiently. For example, ESS contributes to resolve power supply imbalance, stabilize new renewable energy output and regulate frequency. ESS is predicted to be expanded to 55.9GWh of installed capacity by 2023, which is 30 times more than that of 2014. To raise competitiveness of domestic ESS industry in this increasing world market, we have disseminated load-shift ESS for continuous power supply imbalance with FR ESS, and also necessity to secure domestic track record is required. However in case of FR ESS, utility of installing thermal power plant is generally generated within 5% range of rated capacity, so that scalability of domestic market is low without dramatic increase of thermal power plant. Necessity of load-shift ESS dissemination is also decreasing effected by surplus backup power securement policy, raising demand for new dissemination model. New dissemination model is promising for $CO_2$ reduction effect in spite of intermittent output. By stabilizing new renewable energy output in connection with new renewable energy, and regulating system input timing of new renewable energy generation rate, it is prospected model for 'post-2020' regime and energy industry. This research presents a policy alternatives of REC multiplier calculation method to induce investment after outlining PV-connected ESS charge/discharge mode to reduce GHG emission, This alternative is projected to utilize GHG emission reduction methodology for 'Post-2020' regime, big issue of new energy policy.

Pulsed Electric Fields: An Emerging Food Processing Technology-An Overview (PEF 처리에 의한 식품의 가공)

  • Jayaprakasha, H.M.;Yoon, Y.C.;Lee, S.K.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.871-878
    • /
    • 2004
  • Pulsed electric fields(PEF) technology is one of the latest nonthermal methods of food processing for obtaining safe and minimally processed foods. This technology can be effectively explored for obtaining safe food with minimum effect on nutritional, flavor, rheological and sensory qualities of food products. The process involves the application of high voltage(typically 20 ${\sim}$ 80 kv/cm) to foods placed between two electrodes. The mode of inactivation of microorganism; by PEP processing has been postulated in term; of electric breakdown and electroporation. The extent of destruction of microorganisms in PEF processing depends mainly on the electric field strength of the pulses and treatment time. For each cell types, a specific critical electric field strength and specific critical treatment time are required depending on the cell characteristics and the type and strength of the medium where they have been present. The effect also depends on the types of microorganisms and their phase of growth. A careful combination of processing parameters has to be selected for effective processing. The potential applications of PEF technology are numerous ranging from biotechnology to food preservation. With respect to food processing, it has already been established that, the technology is non-thermal in nature, economical and energy efficient, besides providing minimally processed foods. This article gives a brief overview of this technology for food processing applications.