• Title/Summary/Keyword: H*H-fuzzy set

Search Result 76, Processing Time 0.026 seconds

H * H-FUZZY SETS

  • Lee, Wang-Ro;Hur, Kul
    • Honam Mathematical Journal
    • /
    • v.32 no.2
    • /
    • pp.333-362
    • /
    • 2010
  • We define H*H-fuzzy set and form a new category Set(H*H) consisting of H*H-fuzzy sets and morphisms between them. First, we study it in the sense of topological universe and obtain an exponential objects of Set(H*H). Second, we investigate some relationships among the categories Set(H*H), Set(H) and ISet(H).

On the Definition of Intuitionistic Fuzzy h-ideals of Hemirings

  • Rahman, Saifur;Saikia, Helen Kumari
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.3
    • /
    • pp.435-457
    • /
    • 2013
  • Using the Lukasiewicz 3-valued implication operator, the notion of an (${\alpha},{\beta}$)-intuitionistic fuzzy left (right) $h$-ideal of a hemiring is introduced, where ${\alpha},{\beta}{\in}\{{\in},q,{\in}{\wedge}q,{\in}{\vee}q\}$. We define intuitionistic fuzzy left (right) $h$-ideal with thresholds ($s,t$) of a hemiring R and investigate their various properties. We characterize intuitionistic fuzzy left (right) $h$-ideal with thresholds ($s,t$) and (${\alpha},{\beta}$)-intuitionistic fuzzy left (right) $h$-ideal of a hemiring R by its level sets. We establish that an intuitionistic fuzzy set A of a hemiring R is a (${\in},{\in}$) (or (${\in},{\in}{\vee}q$) or (${\in}{\wedge}q,{\in}$)-intuitionistic fuzzy left (right) $h$-ideal of R if and only if A is an intuitionistic fuzzy left (right) $h$-ideal with thresholds (0, 1) (or (0, 0.5) or (0.5, 1)) of R respectively. It is also shown that A is a (${\in},{\in}$) (or (${\in},{\in}{\vee}q$) or (${\in}{\wedge}q,{\in}$))-intuitionistic fuzzy left (right) $h$-ideal if and only if for any $p{\in}$ (0, 1] (or $p{\in}$ (0, 0.5] or $p{\in}$ (0.5, 1] ), $A_p$ is a fuzzy left (right) $h$-ideal. Finally, we prove that an intuitionistic fuzzy set A of a hemiring R is an intuitionistic fuzzy left (right) $h$-ideal with thresholds ($s,t$) of R if and only if for any $p{\in}(s,t]$, the cut set $A_p$ is a fuzzy left (right) $h$-ideal of R.

Intuitionistic H-Fuzzy Relations (직관적 H-퍼지 관계)

  • K. Hur;H. W. Kang;J. H. Ryou;H. K. Song
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.37-40
    • /
    • 2003
  • We introduce the category IRel (H) consisting of intuitionistic fuzzy relational spaces on sets and we study structures of the category IRel (H) in the viewpoint of the topological universe introduced by L.D.Nel. Thus we show that IRel (H) satisfies all the conditions of a topological universe over Set except the terminal separator property and IRel (H) is cartesian closed over Set.

  • PDF

Interval-Valued H-Fuzzy Sets

  • Lee, Keon-Chang;Lee, Jeong-Gon;Hur, Kul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.134-141
    • /
    • 2010
  • We introduce the category IVSet(H) of interval-valued H-fuzzy sets and show that IVSet(H) satisfies all the conditions of a topological universe except the terminal separator property. And we study some relations among IVSet (H), ISet (H) and Set (H).

ON $H_v$-SUBGROUPS AND ANTI FUZZY $H_v$-SUBGROUPS

  • Davvaz, B.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.1
    • /
    • pp.181-190
    • /
    • 1998
  • In this paper we define the concept of anti fuzzy $H_v$-subgroup of an $H_v$ -group and prove a few theorems concerning this concept. We also obtain a necessary and sufficient condition for a fuzzy subset of an $H_v$-group to be an anti fuzzy $H_v$ -subgroup. We also abtain a relation between the fuzzy $H_v$-subgroups and the and the anti fuzzy $H_v$-subgroup.

H-FUZZY SEMITOPOGENOUS PREOFDERED SPACES

  • Chung, S.H.
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.687-700
    • /
    • 1994
  • Throughout this paper we will let H denote the complete Heyting algebra ($H, \vee, \wedge, *$) with order reversing involution *. 0 and 1 denote the supermum and the infimum of $\emptyset$, respectively. Given any set X, any element of $H^X$ is called H-fuzzy set (or, simply f.set) in X and will be denoted by small Greek letters, such as $\mu, \nu, \rho, \sigma$. $H^X$ inherits a structure of H with order reversing involution in natural way, by definding $\vee, \wedge, *$ pointwise (sam notations of H are usual). If $f$ is a map from a set X to a set Y and $\mu \in H^Y$, then $f^{-1}(\mu)$ is the f.set in X defined by f^{-1}(\mu)(x) = \mu(f(x))$. Also for $\sigma \in H^X, f(\sigma)$ is the f.set in Y defined by $f(\sigma)(y) = sup{\sigma(x) : f(x) = y}$ ([4]). A preorder R on a set X is reflexive and transitive relation on X, the pair (X,R) is called preordered set. A map $f$ from a preordered set (X, R) to another one (Y,T) is said to be preorder preserving (inverting) if for $x,y \in X, xRy$ implies $f(x)T f(y) (resp. f(y)Tf(x))$. For the terminology and notation, we refer to [10, 11, 13] for category theory and [7] for H-fuzzy semitopogenous spaces.

  • PDF

INTUITIONISTIC H-FUZZY SETS

  • HUR KUL;KANG HEE WON;RYOU JANG HYUN
    • The Pure and Applied Mathematics
    • /
    • v.12 no.1
    • /
    • pp.33-45
    • /
    • 2005
  • We introduce the category ISet(H) of intuitionistic H-fuzzy sets and show that ISet(H) satisfies all the conditions of a topological universe except the terminal separator property. And we study the relation between Set(H) and ISet(H).

  • PDF

PRODUCT OF FUZZY ${H_v}-IDEALS$ IN ${H_v}-RINGS$

  • Davvaz, B.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.909-917
    • /
    • 2001
  • In this paper we define product between fuzzy ${H_v}-ideals$ of given ${H_v}-rings$. we consider the fundamental relation ${\gamma}^*$ defined on and ${H_v}-ring$ and give some properties of the fundamental relations and fundamental rings with respect to the product of fuzzy ${H_v}-ideals$.

INTUITIONISTIC(S,T)-FUZZY h-IDEALS OF HEMIRINGS

  • Zhan, Jianming;Shum, K.P.
    • East Asian mathematical journal
    • /
    • v.22 no.1
    • /
    • pp.93-109
    • /
    • 2006
  • The concept of intuitionistic fuzzy set was first introduced by Atanassov in 1986. In this paper, we define the intuitionistic(S,T)-fuzzy left h-ideals of a hemiring by using an s-norm S and a t-norm T and study their properties. In particular, some results of fuzzy left h-ideals in hemirings recently obtained by Jun, $\"{O}zt\"{u}rk$, Song, and others are extended and generalized to intuitionistic (S,T)-fuzzy ideals over hemirings.

  • PDF