• Title/Summary/Keyword: H$\infty$controller

Search Result 572, Processing Time 0.025 seconds

Optimal Design of a Continuous Time Deadbeat Controller (연속시간 유한정정제어기의 최적설계)

  • Kim Seung Youal;Lee Keum Won
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.2
    • /
    • pp.169-176
    • /
    • 2000
  • Deadbeat property is well established in digital control system design in time domain. But in continuous time system, deadbeat is impossible because of it's ripples between sampling points inspite of designs using the related digital control system design theory. But several researchers suggested delay elements. A delay element is made from the concept of finite Laplace Transform. From some specifications such as internal model stability, physical realizations as well as finite time settling, unknown coefficents and poles in error transfer functions with delay elements can be calulted so as to satisfy these specifications. For the application to the real system, robustness property can be added. In this paper, error transfer function is specified with 1 delay element and robustness condition is considered additionally. As the criterion of the robustness, a weighted sensitive function's $H_{infty}$ norm is used. For the minimum value of the criterion, error transfer function's poles are calculated optimally. In this sense, optimal design of the continuous time deadbeat controller is obtained.

  • PDF

Optimal Structural Design for Flexible Space Structure with Control System Based on LMI

  • Park, Jung-Hyen;Cho, Kyeum-Rae
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.75-82
    • /
    • 2002
  • A simultaneous optimal design problem of structural and control systems is discussed by taking a 3-D truss structure as an object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider a minimum weight design problem for structural system and disturbance suppression problem for the control system. The structural objective function is the structural weight and the control objective function is $H_{\infty}$ norm from the disturbance input to the controlled output in the closed-loop system. The design variables are cross sectional areas of the truss members. The conditions for the existence of controller are expressed in terms of linear matrix inequalities (LMI) By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken. We showed in this paper the validity of simultaneous optimal design of structural and control systems.

Robust Tuning of PID Controller With Disturbance Rejection Using Bacterial Foraging Based Optimization

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1092-1097
    • /
    • 2005
  • In this paper, design approach of PID controller with rejection function against external disturbance in motor control system is proposed using bacterial foraging based optimal algorithm. Up to the present time, PID Controller has been used to operate for AC motor drive because of its implementational advantages in practice and simple structure. However, it is not easy to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error in the industrial system with disturbance. To design disturbance rejection tuning, disturbance rejection conditions based on $H_{\infty}$ are illustrated and the performance of response based on the bacterial foraging is computed for the designed PID controller as ITSE (Integral of time weighted squared error). Hence, parameters of PID controller are selected by bacterial foraging based optimal algorithm to obtain the required response

  • PDF

Intelligent Tuning of PID Controller With Disturbance Rejection Using Bacterial Foraging

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.15-20
    • /
    • 2004
  • In this paper, design approach of PID controller with rejection function against external disturbance in motor control system is proposed using bacterial foraging based optimal algorithm. Up to the present time, PID Controller has been used to operate for AC motor drive because of its implementational advantages in practice and simple structure. However, it is not easy to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error in the industrial system with disturbance. To design disturbance rejection tuning, disturbance rejection conditions based on H$\_$$\infty$/ are illustrated and the performance of response based on the bacterial foraging is computed for the designed PID controller as ITSE (Integral of time weighted squared error). Hence, parameters of PID controller are selected by bacterial foraging based optimal algorithm to obtain the required response.

  • PDF

Robust Controller Design of Nuclear Power Reactor by Parametric Method

  • Yoon-Joon Lee;Man-Gyun Na
    • Nuclear Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.436-444
    • /
    • 2002
  • The robust controller for the nuclear reactor power control system is designed. Since the reactor model is not exact, it is necessary to design the robust controller that can work in the real situations of perturbations. The reactor model is described in the form of transfer function and the bound of each coefficient is determined to set up the linear interval system. By the Kharitonov and the edge theorem, a frequency based design template is made and applied to the determination of the controller. The controller designed by this method is simpler than that obtained by the H$_{\infty}$. Although the controller is designed with the basis of high power, it could be used even at low power.n at low power.

The μ-synthesis and analysis of water level control in steam generators

  • Salehi, Ahmad;Kazemi, Mohammad Hosein;Safarzadeh, Omid
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.163-169
    • /
    • 2019
  • The robust controller synthesis and analysis of the water level process in the U-tube system generator (UTSG) is addressed in this paper. The parameter uncertainties of the steam generator (SG) are modeled as multiplicative perturbations which are normalized by designing suitable weighting functions. The relative errors of the nominal SG model with respect to the other operating power level models are employed to specify the weighting functions for normalizing the plant uncertainties. Then, a robust controller is designed based on ${\mu}$-synthesis and D-K iteration, and its stability robustness is verified over the whole range of power operations. A gain-scheduled controller with $H_{\infty}$-synthesis is also designed to compare its robustness with the proposed controller. The stability analysis is accomplished and compared with the previous QFT design. The ${\mu}$-analysis of the system shows that the proposed controller has a favorable stability robustness for the whole range of operating power conditions. The proposed controller response is simulated against the power level deviation in start-up and shutdown stages and compared with the other concerning controllers.

Multi-Objective Controller Design using a Rank-Constrained Linear Matrix Inequality Method (계수조건부 LMI를 이용한 다목적 제어기 설계)

  • Kim, Seog-Joo;Kim, Jong-Moon;Cheon, Jong-Min;Kwon, Soon-Mam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.67-71
    • /
    • 2009
  • This paper presents a rank-constrained linear matrix inequality (LMI) approach to the design of a multi-objective controller such as $H_2/H_{\infty}$ control. Multi-objective control is formulated as an LMI optimization problem with a nonconvex rank condition, which is imposed on the controller gain matirx not Lyapunov matrices. With this rank-constrained formulation, we can expect to reduce conservatism because we can use separate Lyapunov matrices for different control objectives. An iterative penalty method is applied to solve this rank-constrained LMI optimization problem. Numerical experiments are performed to illustrate the proposed method.

Simultaneous Optimal Design of Control-Structure Systems for 2-D Truss Structure (2차원 트러스 구조물에 대한 제어/구조 시스템의 동시최적설계)

  • Park, Jung-Hyen;Kim, Soon-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.812-818
    • /
    • 2001
  • This paper proposes an optimum design method of structural and control systems, taking a 2-D truss structure as an example. The structure is supposed to be subjected to initial static loads and disturbances. For the structure, a FEM model is formed, and using modal transformation, the equation of motion is transformed into that of modal coordinates in order to reduce the D.O.F. of the FEM model. The structure is controlled by an output feedback $H^$\infty$$ controller to suppress the effect of the disturbances. The design variables of the simultaneous optimal design of control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H^$\infty$$ norm, that is, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been carried out. Through the consideration of structural weight and $H^$\infty$$ norm, an advantage of the simultaneous optimum design of structural and control systems is shown. Moreover, while the optimized performance index of control is almost kept, we can acquire better design of structural strength.

  • PDF

Design of a Optimizing Controller for the Photovoltaic System Simulator (태양광 시뮬레이터의 최적 제어기 설계)

  • Lee, Youn;Chun, Yeong-Han;Lee, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.234-235
    • /
    • 2008
  • 본 논문은 계통연계형 태양광발전 시스템의 Power Conditioning System의 성능 테스트를 위한 태양광 시뮬레이터의 제어기 최적 설계에 관한 내용이다. 태양광 시뮬레이터 기술의 핵심은 정확한 에너지원의 모델링과 빠르고 안정적인 전력증폭기 제어기술에 있다. 종래의 제어기인 비례 적분제어기를 사용하는 과정에서 비례 적분 제어기 특유의 응답지연 특성으로 시뮬레이터의 동적 특성을 완벽하게 구현할 수 없기에, 응답속도가 빠르고 안정적인 제어기법인 $H_{\infty}$제어 이론을 적용하였다. 태양광 시뮬레이터의 제어기 성능평가를 위해서 태양광 시뮬레이터의 출력을 결정 하는 DC Power Amplifier의 성능실험을 하였다. DC Power Amplifier를 정전압에서 부하의 투입/제거시 비례-적분 제어기와 $H_{\infty}$제어기의 응답속도와 변동전압의 크기를 비교하여 제어기의 성능을 비교하였다.

  • PDF

Structure-Control Combined Optimal Design of 3-D Truss Structure Considering Intial State and Feedback Gain

  • Park, Jung-Hyen
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.66-72
    • /
    • 2003
  • This paper proposes an optimum, problematic design for structural and control systems, taking a 3-D truss structure as an example. The structure is subjected to initial static loads and time-varying disturbances. The structure is controlled by a state feedback H$_{\infty}$ controller which suppress the effects of disturbances. The design variables are the cross sectional areas of truss members. The structural objective function is the structural weight. For the control objective, we consider two types of performance indices, The first function represents the effect of the initial loads. The second function is the norm of the feedback gain, These objective functions are in conflict with each other but are transformed into one control objective by the weighting method. The structural objectives is treated as the constraint, By introducing the second control objective which considers the magnitude of the feedback gain, we can create a design to model errors.