• Title/Summary/Keyword: H$\grave{a}$jek-R$\grave{e}$nyi-type inequality

Search Result 2, Processing Time 0.017 seconds

ON H$\grave{a}$JEK-R$\grave{e}$NYI-TYPE INEQUALITY FOR CONDITIONALLY NEGATIVELY ASSOCIATED RANDOM VARIABLES AND ITS APPLICATIONS

  • Seo, Hye-Young;Baek, Jong-Il
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.623-633
    • /
    • 2012
  • Let {${\Omega}$, $\mathcal{F}$, P} be a probability space and {$X_n|n{\geq}1$} be a sequence of random variables defined on it. A finite sequence of random variables {$X_n|n{\geq}1$} is said to be conditionally negatively associated given $\mathcal{F}$ if for every pair of disjoint subsets A and B of {1, 2, ${\cdots}$, n}, $Cov^{\mathcal{F}}(f_1(X_i,i{\in}A),\;f_2(X_j,j{\in}B)){\leq}0$ a.s. whenever $f_1$ and $f_2$ are coordinatewise nondecreasing functions. We extend the H$\grave{a}$jek-R$\grave{e}$nyi-type inequality from negative association to conditional negative association of random variables. In addition, some corollaries are given.

On the Hàjek-Rènyi-Type Inequality for Conditionally Associated Random Variables

  • Choi, Jeong-Yeol;Seo, Hye-Young;Baek, Jong-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.6
    • /
    • pp.799-808
    • /
    • 2011
  • Let {${\Omega}$, $\mathcal{F}$, P} be a probability space and {$X_n{\mid}n{\geq}1$} be a sequence of random variables defined on it. A finite sequence of random variables {$X_i{\mid}1{\leq}i{\leq}n$} is a conditional associated given $\mathcal{F}$ if for any coordinate-wise nondecreasing functions f and g defined on $R^n$, $Cov^{\mathcal{F}}$ (f($X_1$, ${\ldots}$, $X_n$), g($X_1$, ${\ldots}$, $X_n$)) ${\geq}$ 0 a.s. whenever the conditional covariance exists. We obtain the H$\grave{a}$jek-R$\grave{e}$nyi-type inequality for conditional associated random variables. In addition, we establish the strong law of large numbers, the three series theorem, integrability of supremum, and a strong growth rate for $\mathcal{F}$-associated random variables.