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ON HàJEK-RèNYI-TYPE INEQUALITY FOR

CONDITIONALLY NEGATIVELY ASSOCIATED RANDOM

VARIABLES AND ITS APPLICATIONS†
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Abstract. Let {Ω,F , P} be a probability space and {Xn|n ≥ 1} be a
sequence of random variables defined on it. A finite sequence of ran-

dom variables {Xn|n ≥ 1} is said to be conditionally negatively associ-
ated given F if for every pair of disjoint subsets A and B of {1, 2, · · · , n},
CovF (f1(Xi, i ∈ A), f2(Xj , j ∈ B)) ≤ 0 a.s. whenever f1 and f2 are co-
ordinatewise nondecreasing functions. We extend the Hàjek-Rènyi-type

inequality from negative association to conditional negative association of
random variables. In addition, some corollaries are given.
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1. Introduction

Let {Ω,F , P} be a probability space and {Xn|n ≥ 1} be a sequence of random
variables defined on a fixed probability space {Ω,F , P}.

A finite sequence of random variables {Xi|1 ≤ i ≤ n} is said to be negatively
associated(NA) if for every pair of disjoint subsets A and B of {1, 2, · · · , n} and
any real coordinatewise nondecreasing functions f1 on RA, f2 on RB ,

Cov(f1(Xi, i ∈ A), f2(Xj , j ∈ B)) ≤ 0

whenever covariance exists. An infinite sequence of random variables {Xn|n ≥ 1}
is NA if every finite subfamily is NA. This concept was first introduced by
Alam and Saxena[1]. Joag-Dev and Proschan[6] showed that many well known
multivariate distributions possess the NA property, and concepts of NA random
variables are of considerable uses in system reliability theory, percolation theory
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and multivariate analysis of statistics. We refer to Joag-Dev and Proschan[6]
for fundamental properties, Matula[11] for the three series theorem, Su et al.[19]
and Shao[18] for moment inequalities, Shao and Su[17] for the law of the iterated
logarithm, Liang and Su[7] for complete convergence, Newman[12] for the central
limit theorem, Lin[8] for the invariance principle, among others.

Let X and Y be random variables with EX2 < ∞ and EY 2 < ∞. Let F
be a sub-σ-algebra of A. Prakasa Rao[14] defined the notion of the conditional
covariance of X and Y given F as

CovF (X,Y ) = EF ((X − EFX)(Y − EFY )),

where EFZ denotes the conditional expectation of a random variable Z given
F .

On the basis of the above definition of conditional covariance, Yuan et al.[21]
introduced a new kind of dependence called conditional negative association,
which is an extension the corresponding non-conditional case.

Definition 1.1. A finite family of random variables {Xi|1 ≤ i ≤ n} is said to be
conditional negatively associated given F(F −NA) if for every pair of disjoint
subsets A and B of {1, 2, · · · , n}, and any real coordinatewise nondecreasing
functions f1 on RA, f2 on RB,

CovF (f1(Xi, i ∈ A), f2(Xj , j ∈ B)) ≤ 0 a.s.

whenever F-covariance exists. An infinite sequence of random variables {Xn|n ≥
1} is F − NA if every finite subfamily is F − NA. Yuan et al. presented the
relation between negative association and conditional negative association, that
is, the negative association does not imply the conditional negative association,
and vice versa.

Hàjek-Rènyi[4] proved the following important inequality. If {Xn, n ≥ 1}
is sequence of independent random variables with mean zero and finite second
moments, and {bn, n ≥ 1} is a sequence of positive nondecreasing real numbers,
then for any ε > 0,

P

(
max

m≤k≤n

∣∣∣∣
k∑

j=1

Xj

bk

∣∣∣∣ > ε

)
≤ ε−2

( n∑
j=m+1

EX2
j

b2j
+

1

b2m

m∑
j=1

EX2
j

)
.

The Hàjek-Rènyi- type inequality was studied by many authors (see Gan[3],
Liu et al.[9], Cai[2], Prakasa Rao [13], Hu et al.[5], Qiu et al.[15], Rao[16], and
Sung[20], etc.) The main purpose of this paper is to extend the Hàjek-Rènyi
inequality from negative association to F−NA random variables, and this moti-
vate our original interest in conditional negative association of random variables.
In particular, we proved the conditional Hàjek-Rènyi -type inequality, which is
conditional versions of the earlier results for NA random variables. As an appli-
cations, we obtain the integrability of supremum and strong law of large numbers
for conditionally negatively associated random variables. Finally, throughout
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this paper, {Xn|n ≥ 1} will be called conditionally centered if EFXn = 0 for
every n ≥ 1 and c will be represented positive constants which their value may
change from one place to another.

2. The Hàjek-Rènyi-type inequality for F −NA random variables

To prove the Hàjek-Rènyi-type inequality for F −NA random variables, we
need the following conditional Rosenthal type inequalities for F −NA random
variables which is extended the corresponding results for NA random variables
(see, Shao[18] and Su et al.[19] ).

Lemma 2.1 ([21]). Let {Xn|n ≥ 1} be a sequence of conditionally centered
F − NA random variables with EF |Xn|p < ∞ a.s., n ≥ 1 and p ≥ 1. Then
there exists a positive constant c such that for all n ≥ 1,

EF
(

max
1≤k≤n

|
k∑

i=1

Xi|p
)

≤ c
n∑

i=1

EF |Xi|p a.s. for 1 ≤ p ≤ 2

and

EF
(

max
1≤k≤n

|
k∑

i=1

Xi|p
)

≤ c

( n∑
i=1

EF |Xi|p + (

n∑
i=1

EFX2
i )

p/2

)
a.s. for p > 2.

Using Lemma 2.1, we can obtain the following Hàjek-Rènyi-type inequality for
F −NA random variables.

Theorem 2.1. Let {Xn|n ≥ 1} be a sequence of conditionally centered F −NA
random variables with EF |Xn|p < ∞ a.s.,n ≥ 1 and p ≥ 1 and let {bn|n ≥ 1} be
a sequence of positive nondecreasing real numbers. Then, for any F-measurable
variables ε > 0 a.s., and positive integers m,n with m ≤ n,

P

(
max

m≤k≤n

∣∣∣∣Sk

bk

∣∣∣∣ ≥ ε|F
)

≤ cε−2

( m∑
i=1

EF |Xi|p

bpm
+

n∑
i=m+1

EF |Xi|p

bpi

)
a.s. for 1 ≤ p ≤ 2

and

P

(
max

m≤k≤n

∣∣∣∣Sk

bk

∣∣∣∣ ≥ ε|F
)

≤ cε−2

( m∑
i=1

EF |Xi|p

bpi
+ (

m∑
i=1

EFX2
i

b2i
)p/2

+

n∑
i=m+1

EF |Xi|p

bpi
+ (

n∑
i=m+1

EFX2
i

b2i
)p/2

)
a.s. for p > 2

Proof. Let Sk =
∑k

i=1 Xi =
∑m

i=1 Xi +
∑k

i=m+1 Xi , for any 1 ≤ m ≤ k, and
let ε > 0 a.s. be an arbitrary F-measurable variable. Without loss of generality,
setting b0 = 0, we have

k∑
i=m+1

Xi =
k∑

i=m+1

biXi

bi
=

k∑
i=m+1

( i∑
j=1

(bj − bj−1)
Xi

bi

)
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=

m∑
j=1

(bj − bj−1)

k∑
i=m+1

Xi

bi
+

k∑
j=m+1

(bj − bj−1)

k∑
i=j

Xi

bi

= bm

k∑
i=m+1

Xi

bi
+

k∑
j=m+1

(bj − bj−1)
k∑

i=j

Xi

bj
,

and

Sk

bk
=

k∑
i=1

Xi

bk
=

m∑
i=1

Xi

bk
+

bm
bk

k∑
i=m+1

Xi

bi
+

k∑
j=m+1

(bj − bj−1)

bk

k∑
i=j

Xi

bi
.

Since
∑k

j=m+1(bj − bj−1) = bk − bm < bk and {bn|n ≥ 1} is a positive
nondecreasing real number sequence, we have

(
|Sk

bk
| ≥ ε

)
⊂

(
|

m∑
i=1

Xi

bk
| ≥ ε

2

)
∪
(

max
m+1≤j≤k

|
k∑

i=j

Xi

bi
| ≥ ε

2

)
,

(
max

m≤k≤n
|Sk

bk
| ≥ ε

)
⊂

(
max

m≤k≤n
|

m∑
i=1

Xi

bk
| ≥ ε

2

)
∪
(

max
m≤k≤n

max
m+1≤j≤k

|
k∑

i=j

Xi

bi
| ≥ ε

2

)

⊂
(
|

m∑
i=1

Xi

bm
| ≥ ε

2

)
∪
(

max
m+1≤k≤n

|
k∑

i=m+1

Xi

bi
| ≥ ε

4

)
Hence, by ε > 0 a.s. is an F-measurable random variable,

P

(
max

m≤k≤n
|Sk

bk
| ≥ ε|F

)
≤ P

(
|

m∑
i=1

Xi

bm
| ≥ ε

2
|F

)
+ P

(
max

m+1≤k≤n
|

k∑
i=m+1

Xi

bi
| ≥ ε

4
|F

)
=: I1 + I2

Therefore, we have by Lemma 2.1,

I1 = P

(
|

m∑
i=1

Xi

bm
| ≥ ε

2
|F

)
≤ P

(
1

bm
max

1≤k≤m
|

k∑
i=1

Xi| ≥
ε

2
|F

)
(1)

≤ cε−2
m∑
i=1

EF |Xi|p

bpm
a.s. for 1 ≤ p ≤ 2

and

I1 ≤ cε−2

( m∑
i=1

EF |Xi|p

bpi
+ (

m∑
i=1

EFX2
i

b2i
)p/2

)
a.s. for p > 2 (2)



On Hàjek-Rènyi-type inequality 627

Next, as to I2, we have

I2 = P

(
max

m+1≤k≤n
|

k∑
i=m+1

Xi

bi
| ≥ ε

4
|F

)
(3)

≤ cε−2
n∑

i=m+1

EF |Xi|p

bpi
a.s. for 1 ≤ p ≤ 2

and

I2 ≤ cε−2

( n∑
i=m+1

EF |Xi|p

bpi
+ (

n∑
i=m+1

EFX2
i

b2i
)p/2

)
a.s. for p > 2 (4)

Thus, combining (1), (2), (3) and (4), we obtain

P

(
max

m≤k≤n

∣∣∣∣Sk

bk

∣∣∣∣ ≥ ε|F
)

≤ cε−2

( m∑
i=1

EF |Xi|p

bpm
+

n∑
i=m+1

EF |Xi|p

bpi

)
a.s. for 1 ≤ p ≤ 2

and

P

(
max

m≤k≤n

∣∣∣∣Sk

bk

∣∣∣∣ ≥ ε|F
)

≤ cε−2

( m∑
i=1

EF |Xi|p

bpi
+ (

m∑
i=1

EFX2
i

b2i
)p/2

+
n∑

i=m+1

EF |Xi|p

bpi
+ (

n∑
i=m+1

EFX2
i

b2i
)p/2

)
a.s. for p > 2

The proof is complete. �
Corollary 2.1. Under the conditions of Theorem 2.1, taking m = 1, we obtain
the following results;

P

(
max

1≤k≤n

∣∣∣∣ k∑
i=1

Xi

bk

∣∣∣∣ ≥ ε|F
)

≤ cε−2
n∑

i=1

EF |Xi|p

bpi
a.s. for 1 ≤ p ≤ 2

and

P

(
max

1≤k≤n

∣∣∣∣ k∑
i=1

Xi

bk

∣∣∣∣ ≥ ε|F
)

≤ cε−2

( n∑
i=1

EF |Xi|p

bpi
+ (

n∑
i=1

EFX2
i

b2i
)p/2

)
a.s. for p > 2

Corollary 2.2. Under the conditions of Theorem 2.1, taking p = 2, we have

P

(
max

1≤k≤n

∣∣∣∣ k∑
i=1

Xi

bk

∣∣∣∣ ≥ ε|F
)

≤ cε−2
n∑

i=1

EFX2
i

b2i
a.s.

Corollary 2.3. Under the condition of Theorem 2.1, taking p = 2 and bk = k,
k = m+ 1, · · · , n,

P

(
max

m≤k≤n

∣∣∣∣ k∑
i=1

Xi

k

∣∣∣∣ ≥ ε|F
)

≤
m∑

k=1

EFX2
k

m2
+

n∑
k=m+1

EFX2
k

k2
a.s.
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3. Strong law of large numbers for F −NA random variables

In this section, we obtain the integrability of supremum and strong law of
large numbers for F −NA random variables.

Theorem 3.1. Let {bn|n ≥ 1} be a sequence of positive nondecreasing real
numbers and let {Xn|n ≥ 1} be a sequence of conditionally centered F − NA

random variables such that
∞∑

n=1

EF |Xn|2

b2n
< ∞ a.s., n ≥ 1, then for 0 < r < 2

and conditionally on F ,

(a) EF supn≥1

( |
n∑

i=1

Xi|

bn

)r

< ∞ a.s.

(b) If 0 < bn → ∞, then
n∑

i=1

Xi

bn
→ 0 a.s. as n → ∞.

Proof of (a). Note that

EF supn≥1

( |
n∑

i=1

Xi|

bn

)r

< ∞ a.s. ⇔
∫ ∞

1

P

(
sup
n≥1

|
n∑

i=1

Xi|

bn
≥ t1/r|F

)
dt < ∞ a.s.

Taking an enough large natural number L, we obtain from Theorem 2.1 that

∫ ∞

1

P

(
supn≥1

|
n∑

i=1

Xi|

bn
≥ t1/r|F

)
dt

≤
∫ ∞

1

P

(
max1≤n<L

|
n∑

i=1

Xi|

bn
≥ t1/r|F

)
dt

+

∫ ∞

1

P

( ∞∪
k=1

(maxkL≤n<(k+1)L

|
n∑

i=1

Xi|

bn
≥ t1/r|F

)
dt

≤ c
L∑

i=1

EF |Xi|2

b2i

∫ ∞

1

t−2/tdt+
∞∑

k=1

∫ ∞

1

P

(
maxkL≤n<(k+1)L

|
n∑

i=1

Xi|

bn
≥ t1/r|F

)
dt

≤ c+ c

∞∑
k=1

(
1

b2kM

kL∑
i=1

EFX2
i +

(k+1)L−1∑
i=kL

EFX2
i

b2i

)∫ ∞

1

t−2/tdt

≤ c+ c

∞∑
i=1

EFX2
i

∑
kL≥i

1

b2kL
+ c

∞∑
k=1

(k+1)L−1∑
i=kL

EFX2
i

b2i
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≤ c+ c

∞∑
i=1

EFX2
i

b2i
< ∞ a.s.

The proof is complete.

Proof of (b). For ε > 0 a.s. is an F-measurable random variable, we have by
Theorem 2.1,

P

(
max

m≤k≤n

∣∣∣∣∑k
i=1 Xi

bk

∣∣∣∣ ≥ ε|F
)

≤ cε−2

( m∑
i=1

EF |Xi|2

b2m
+

n∑
i=m+1

EF |Xi|2

b2i

)
But

P

(
supk≥m

|
k∑

i=1

Xi|

bk
> ε|F

)
= lim

n→∞
P

( max
m≤k≤n

∣∣∣∣ k∑
i=1

Xi

∣∣∣∣
bk

≥ ε|F
)

(5)

≤ cε−2

( m∑
i=1

EF |Xi|2

b2m
+

n∑
i=m+1

EF |Xi|2

b2i

)

By Kronecker Lemma and

∞∑
n=1

EF |Xn|2

b2n
< ∞ a.s., we obtain

m∑
i=1

EF |Xi|2

b2m
→ 0 as m → ∞ (6)

Hence, by (5) and (6), we have

lim
n→∞

P

(
supk≥n

|
k∑

i=1

Xi|

bk
> ε|F

)
= 0, i.e.

n∑
i=1

Xi

bn
→ 0 a.s. as n → ∞.

The proof is complete. �
To prove Theorem 3.2, we need the following conditional version of Borel-cantelli
lemma which is proved by Majerak et al.[10].

Lemma 3.1 ([10]). Let {Ω,F , P} be a probability space and let F be a sub-σ-
algebra of A. Then the following results hold.
(i) Let {An|n ≥ 1} be a sequence of events such that

∑∞
n=1 P (An) < ∞.

Then
∑∞

n=1 P (An|F) < ∞ a.s.
(ii) Let {An|n ≥ 1} be a sequence of events and let A = {ω|

∑∞
n=1 P (An|F) <

∞} with P (A) < 1. Then, only finitely many events from the sequence {An ∩

A,n ≥ 1} hold with probability one, namely P

(∩∞
n=1

∪∞
k=n(Ak

∩
A)

)
= 0.

Theorem 3.2. Let {Xn|n ≥ 1} be a sequence of conditionally centered F−NA
random variables such that EF |X|2/α < ∞ a.s. for some 0 < α ≤ 1 and let
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|ani| ≤ n−α/2−δ, 0 < δ < α/2 and
∑n

i=1 a
2
ni ≤ cn−θ, θ > 0. If P (|Xn| > x|F) ≤

cP (|X| > x|F) for all n, x ≥ 0, then

n∑
i=1

aniXi → 0 a.s. as n → ∞ (7)

Proof. Note that ani = a+ni−a−ni, where a
+
ni = max(ani, 0), a

−
ni = max(−ani, 0).

Thus, to prove (7 ), it suffices to show that

n∑
i=1

a+niXi → 0 a.s. as n → ∞ (8)

n∑
i=1

a−niXi → 0 a.s. as n → ∞ (9)

Note {a+niXi : 1 ≤ i ≤ n, n ≥ 1} and {a−niXi : 1 ≤ i ≤ n, n ≥ 1} are still an
F −NA random variables, we prove only (8), the proof of (9) is analogous.
So, without loss of generality, we assume ani > 0, and let aniYi = n−δ/2I(aniXi >
n−δ/2) + aniXiI(|aniXi| ≤ n−δ/2)− n−δ/2I(aniXi < −n−δ/2).

Then {aniYi|1 ≤ i ≤ n, n ≥ 1} are F −NA random variables by definition of
F −NA random variables, and

n∑
i=1

aniXi =

n∑
i=1

ani(Xi − Yi) +

n∑
i=1

aniE
FYi +

n∑
i=1

ani(Yi − EFYi)

= : I3 + I4 + I5

First, we prove that I3 → 0 a.s. as n → ∞. Thus, we have for ε > 0 a.s. is
an F-measurable random variable,

P (
∞∑
i=1

ani(Xi − Yi) > ε/2|F)

≤ P (
∞∪
i=1

Xi ̸= Yi|F)

≤
∞∑
i=1

P (|aniXi| > n−δ/2|F)

≤ C

∞∑
i=1

n−1−δ/αEF |X|2/α

≤ C

∞∑
i=1

n−1−δ/α < ∞ a.s.

by Borel-Cantelli Lemma, we have that

I3 → 0 a.s. as n → ∞. (10)
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Secondly, we prove that I4 → 0 a.s. as n → ∞.
Note that by EFXn = 0, we have

I4 =

n∑
i=1

EF |aniYi|

≤
n∑

i=1

EF |aniXi|I(|aniXi| ≤ n−δ/2) +
n∑

i=1

n−δ/2P (|aniXi| > n−δ/2|F)

≤
n∑

i=1

EF |aniX|I(|aniX| > n−δ/2) +
n∑

i=1

n−δ/2P (|aniX| > n−δ/2|F)

≤ Cn−δ/2−δ/αEF |X|2/α

≤ Cn−δ/2−δ/α → 0 as n → ∞, (11)

since |aniX| = |aniX|2/α|aniX|1−2/α, |ani|2/α|aniX|1−2/α ≤ n−1−δ/2−δ/α.

Next, to prove I5 → 0 a.s. as n → ∞, it suffices to show that for an arbitrary
F-measurable variables ε > 0 a.s.,

I∗5 = P

(
|

n∑
i=1

ani(Yi − EFYi)| > ε/2|F
)

< ∞ a.s. (12)

In fact, from the definition of F − NA random variables, we know that
{ani(Yi − EFYi)| 1 ≤ i ≤ n, n ≥ 1} is still an F − NA random variables.
Hence, by Theorem 3.1, taking bn = 1 and q > 2, according to Lemma 2.1, we
obtain

I∗5 ≤
n∑

i=1

EF |aniYi|q + (
n∑

i=1

EF |aniYi|2)q/2 =: I6 + I7

First, we prove that I6 → 0 as n → ∞. By assumptions, we have that

I6 =
n∑

i=1

EF |aniYi|q

≤ c

n∑
i=1

(
EF |aniXi|qI(|aniXi| ≤ n−δ/2) + n−δq/2P (|aniXi| > n−δ/2|F)

)

≤ c

n∑
i=1

(
EF |aniX|qI(|aniX| ≤ n−δ/2) + n−δq/2P (|aniX| > n−δ/2|F)

)

≤ c
n∑

i=1

n−1−δ/α−δq/2EF |X|2/α

≤ cn−(δq/2+δ/α) → 0 as n → ∞,
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since |aniX|q = |aniX|2/α|aniX|q−2/α = |ani|2/α|X|2/α|aniX|q−2/α, |ani|2/α.
|aniX|q−2/α ≤ n−1−δq/2−δ/α.

Finally, note that EF |X|2/α < ∞ a.s., we have by taking large q > 2,

I7 =
n∑

i=1

(EF |aniYi|2)q/2

≤ c
n∑

i=1

(
EF |aniXi|2I(|aniXi| ≤ n−δ/2) + n−δP (|aniXi| > n−δ/2|F)

)q/2

≤ c
n∑

i=1

n−δ

∫ n−δ

0

P (|aniX|2 > x|F)dx

≤ c
n∑

i=1

n−δEF |aniX|2/α
∫ n−δ

0

x−1/αdx

≤ cn−(1/2+θ+δ)q/2 → 0 as n → ∞.

Thus, combining (10),(11)and (12) we obtain

n∑
i=1

aniXi → 0 a.s. as n → 0.

The proof is complete. �
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2. Cai, G. The Hàjek-Rènyi inequality for ρ∗ -mixing sequences of random variables. Depart-

ment of Mathematics, Zhejiang University, Preprint(2000).
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