Browse > Article
http://dx.doi.org/10.5351/CKSS.2011.18.6.799

On the Hàjek-Rènyi-Type Inequality for Conditionally Associated Random Variables  

Choi, Jeong-Yeol (School of Mathematics and Informational Statistics, Wonkwang University)
Seo, Hye-Young (School of Mathematics and Informational Statistics, Wonkwang University)
Baek, Jong-Il (School of Mathematics and Informational Statistics, Wonkwang University)
Publication Information
Communications for Statistical Applications and Methods / v.18, no.6, 2011 , pp. 799-808 More about this Journal
Abstract
Let {${\Omega}$, $\mathcal{F}$, P} be a probability space and {$X_n{\mid}n{\geq}1$} be a sequence of random variables defined on it. A finite sequence of random variables {$X_i{\mid}1{\leq}i{\leq}n$} is a conditional associated given $\mathcal{F}$ if for any coordinate-wise nondecreasing functions f and g defined on $R^n$, $Cov^{\mathcal{F}}$ (f($X_1$, ${\ldots}$, $X_n$), g($X_1$, ${\ldots}$, $X_n$)) ${\geq}$ 0 a.s. whenever the conditional covariance exists. We obtain the H$\grave{a}$jek-R$\grave{e}$nyi-type inequality for conditional associated random variables. In addition, we establish the strong law of large numbers, the three series theorem, integrability of supremum, and a strong growth rate for $\mathcal{F}$-associated random variables.
Keywords
Associated random variables; conditional covariance; conditional associated random variables; H$\grave{a}$jek-R$\grave{e}$nyi-type inequality;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Oliveira, P. D. (2005). An exponential inequality for associated variables, Statistics & Probability Letters, 73 189-197.   DOI   ScienceOn
2 Prakasa, Rao, B. L. S. (2002). Hajak-Renyi inequality for associated sequences, Statistics & Probability Letters, 57, 139-143.   DOI   ScienceOn
3 Prakasa Rao, B. L. S. (2009). Conditional independence, conditional mixing and conditional association, Annals of the Institute of Statistical Mathematics, 61, 441-460.   DOI
4 Qiu, D. and Gan, S. (2005). The Hajek-Renyi inequality for the NA random variables, Journal of Mathematics, Wuhan University, 25, 553-557.
5 Rao, B. L. S. P. (2002). The Hajek-Renyi type inequality for associated sequences, Statistics & Probability Letters, 57, 139-143.   DOI   ScienceOn
6 Shao, Q. M. and Yu, H. (1996). Weak convergence for weighted empirical processes of dependent sequences, Annals of Probability, 24, 2098-2127.   DOI   ScienceOn
7 Sung, H. S. (2008). A note on the Hajek-Renyi inequality for associated random variables, Statistics & Probability Letters, 78, 885-889.   DOI   ScienceOn
8 Wang, J. F. and Zhang, L. X. (2006). A nonclassical law of the iterated logarithm for function of positively associated random variables, Metika, 64, 361-378.
9 Yang, S. C. and Chen, M. (2007). Exponential inequalities for associated random variables and strong laws of large numbers, Science in China Series A: Mathematics, 50, 705-714.   DOI
10 Yuan, D. M. and Yang, Y. K. (2011). Conditional versions of limit theorems for conditionally associated random variables, Journla of Mathematical Analysis and Applications, 376, 282-293.   DOI   ScienceOn
11 Cai, G. (2000). The Hajek-Renyi Inequality for $\rho$*-Mixing Sequences of Random Variables, Department of Mathematics, Zhejiang University, Preprint.
12 Esary, J. D., Proschan, F. and Walkup, D. W. (1967). Association of random variables with applications, The Annals of Mathematical Statistics, 38, 1466-1474.   DOI
13 Gan, S. (1997). The Hajek-Renyi Inequality for Banach space valued martingales and the p smoothness of Banach space, Statistics & Probability Letters, 32, 245-248.   DOI   ScienceOn
14 Hajek, J. and Renyi, A. (1955). Generalization of an inequality of Kolmogorov, Acta Mathematica Hungarica, 6, 281-283.   DOI
15 Liu, J., Gan, S. and Chen, P. (1999). The Hajek-Renyi inequality for NA random variables and its application, Statistics & Probability Letters, 43, 99-105.   DOI   ScienceOn
16 Hu, S. H., Hu, X. P. and Zhang, L. S. (2005). The Hajek-Renyi-type inequality under second moment condition and its application, Acta Mathematicae Applicatea Sinica, 28, 227-235.
17 Ioannides, D. A. and Roussas, G . G. (1999). Exponential inequality for associated random variables, Statistics & Probability Letters, 42, 423-431.   DOI   ScienceOn
18 Lin, Z. Y. (1997). An invariance principle for negatively associated random variables, Chinese Science Bulletin, 42, 359-364.   DOI
19 Majerak, D., Nowak, W. and Zie, W. (2005). Conditional strong law of large numbers, International Journal of Pure and Applied Mathematics, 20, 143-157.
20 Newman, C. M. and Wright, A. L. (1981). An invariance principle for certain dependent sequences, Annals of Probability, 9, 671-675.   DOI   ScienceOn
21 Newman, C. M. and Wright, A. L. (1982). Associated random variables and martingale inequalities, Probability Theory and Related Fields, 59, 361-371.
22 Birkel, T. (1998). Moment bounds for associated sequences, Annals of Probability, 16, 1184-1193.