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Abstract
Let {Ω,F , P} be a probability space and {Xn|n ≥ 1} be a sequence of random variables defined on it. A

finite sequence of random variables {Xi|1 ≤ i ≤ n} is a conditional associated given F if for any coordinate-
wise nondecreasing functions f and g defined on Rn, CovF ( f (X1, . . . , Xn), g(X1, . . . , Xn)) ≥ 0 a.s. whenever
the conditional covariance exists. We obtain the Hàjek-Rènyi-type inequality for conditional associated random
variables. In addition, we establish the strong law of large numbers, the three series theorem, integrability of
supremum, and a strong growth rate for F -associated random variables.

Keywords: Associated random variables, conditional covariance, conditional associated random
variables, Hàjek-Rènyi-type inequality.

1. Introduction

Let {Ω,F , P} be a probability space and all random variables in this paper are defined on it unless
specified otherwise. A finite sequence of random variables {Xi|1 ≤ i ≤ n}is said to be associated if for
any coordinate-wise nondecreasing functions f and g defined on Rn,

Cov ( f (X1, . . . , Xn), g(X1, . . . , Xn)) ≥ 0.

Assuming that the covariance exists. An infinite sequence of random variables {Xn|n ≥ 1} is said to
be associated if every finite subsequence is associated. Esary et al. (1967) introduced a concept of
association. Lately significant efforts have been dedicated to prove reliability theory: Limit theorems
and statistics applications for such random variables Birkel (1998) provided some inequalities that
Shao and Yu (1996) later generalized. Ioannides and Roussas (1999) established some exponential
type inequalities, Oliveira (2005) presented some extensions, and Yang and Chen (2007) made further
extensions. Newman and Wright (1981) obtained an invariance principle, and Lin (1997) improved
it. Wang and Zhang (2006) developed a nonclassical law of the iterated logarithm, among authors.

Let X and Y be random variables with EX2 < ∞ and EY2 < ∞. Let F be a sub-σ-algebra of
A. Prakasa Rao (2009) defined the notion of the conditional covariance of X and Y given F (F -
covariance) as

CovF (X,Y) = EF
((

X − EF X
) (

Y − EF Y
))
,

where EF Z denotes the conditional expectation of a random variable Z given F .
In contrast to the ordinary concept of variance, conditional variance of X given F is defined

as VarF X ≡ CovF (X, X). On the basis of the above definition of conditional covariance, Prakasa
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Rao proposed a new kind of dependence called conditional association, which is an extension to the
corresponding non-conditional case.

Definition 1. A finite sequence of random variables {Xi|1 ≤ i ≤ n} is said to be conditional associated
given F (F -associated) if for any two coordinate-wise nondecreasing functions f and g defined on Rn,

CovF ( f (X1, X2, . . . , Xn), g(X1, X2, . . . , Xn)) ≥ 0, a.s.

whenever the conditional covariance exists. An infinite sequence of random variables {Xn|n ≥ 1} is
said to be F -associated if every finite subsequence is F -associated. Yuan and Yang (2011) presented
the relation between (positive) association and conditional association where the association does
not imply the conditional association, and vice versa.

Hàjek-Rènyi (1955) proved the following important inequality. If {Xn, n ≥ 1} is sequence of inde-
pendent random variables with mean zero and finite second moments, and {bn, n ≥ 1} is a sequence of
positive nondecreasing real numbers, then for any ε > 0,

P

 max
m≤k≤n

∣∣∣∣∣∣∣
∑k

j=1X j

bk

∣∣∣∣∣∣∣ > ε
 ≤ ε−2

 n∑
j=m+1

EX2
j

b2
j

+
1

b2
m

m∑
j=1

EX2
j

 .
Many authors have studied the above inequality (Gan, 1997; Liu et al., 1999; Cai, 2000; Prakasa Rao,
2002; Hu et al., (2005); Qiu and Gan, 2005; Rao, 2002; Sung, 2008; etc). Recently, Yuan and Yang
extended the Hàjek-Rènyi inequality to conditional associated random variables.

This paper develops a Hàjek-Rènyi-type inequality for F -associated random variables and uses
a proof method different from Yuan and Yang. Using this result, we obtain the strong law of large
numbers, three series theorem, and integrability of supremum for F -associated random variables.
Finally, throughout this paper, c will represent positive constants where their value may change from
one place to another.

2. Conditional Hàjek-Rènyi-Type Inequality

To prove the Hàjek-Rènyi-type inequality for F -associated random variables, we need the following
Lemma 1.

Lemma 1. Let {Xi|1 ≤ i ≤ n} be a sequence of F -associated random variables with EF Xk = 0
and EF X2

k < ∞ for each k with 1 ≤ k ≤ n. Then for an arbitrary F -measurable random variables
ε > 0 a.s.,

P
(
max
1≤k≤n
|S k | ≥ ε | F

)
≤ cEF S 2

n,

where S n =
∑n

i=1 Xi.

Proof: By applying proof of Newman and Wright (1982), we obtain that for ε > 0 a.s. is an arbitrary
F -measurable random variable,

P (max(0, S 1, S 2, . . . , S n) ≥ ε | F ) ≤ cEF (max(0, S 1, . . . , S n))2

≤ cEF S 2
n.
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Note that−X1, . . . ,−Xn are alsoF -associated random variables, replacing random variables X1, . . . , Xn

by −X1, . . . ,−Xn, we obtain that for ε > 0 a.s. is an arbitrary F -measurable random variable,

P (max(0,−S 1,−S 2, . . . ,−S n) ≥ ε | F ) ≤ cEF S 2
n.

Hence,

P
(
max
1≤k≤n
|S k | ≥ ε | F

)
≤ P

(
max(0, S 1, . . . , S n) ≥ ε

2

∣∣∣∣F )
+ P

(
max(0,−S 1, . . . ,−S n) ≥ ε

2

∣∣∣∣F )
≤ cEF S 2

n.

The proof is complete �

First, we will give a Hàjek-Rènyi-type inequality for F -associated random variables.

Theorem 1. Let {Xn|n ≥ 1} be a sequence of F -associated random variables with EF Xi = 0 and
EF X2

i < ∞ a.s. for each i ≥ 1 and let {bn|n ≥ 1} be a sequence of positive nondecreasing real numbers.
Then for an arbitrary F -measurable random variables ε > 0 a.s. and positive integer m ≤ n,

P

 max
m≤k≤n

1
bk

k∑
i=1

(
Xi − EF Xi

)
≥ ε

∣∣∣F 
≤ c

 m∑
i=1

VarF Xi

b2
m
+

m∑
1≤i,k≤m

CovF (Xi, Xn)
b2

m
+

n∑
j=m+1

VarF X j

b2
j

+

n∑
m+1≤ j,k≤n

CovF (X j, Xk)
b jbk

 a.s.

Proof: Noting that {Xn|n ≥ 1} is an F -associated random variables implies {(Xn − EF Xn)|n ≥ 1} is
an also F -associated random variables and that ε > 0 a.s. is an F -measurable random variable, we
obtain

P

 max
m≤k≤n

∣∣∣∣∣∣∣ 1
bk

 k∑
i=1

(
Xi − EF Xi

)
∣∣∣∣∣∣∣ ≥ ε

∣∣∣∣F 
= P

 max
m≤k≤n

∣∣∣∣∣∣∣ 1
bk

 m∑
i=1

(
Xi − EF Xi

)
+

k∑
i=1

(
Xi − EF Xi

)
−

m∑
i=1

(
Xi − EF Xi

)
∣∣∣∣∣∣∣ ≥ ε

∣∣∣∣F 
≤ P

 max
m≤k≤n

∣∣∣∣∣∣∣ 1
bk

 m∑
i=1

(
Xi −EF Xi

)
∣∣∣∣∣∣∣ ≥ ε

2

∣∣∣∣F  +P

 max
m≤k≤n

∣∣∣∣∣∣∣ 1
bk

 k∑
i=1

(
Xi −EF Xi

)
−

m∑
i=1

(
Xi −EF Xi

)
∣∣∣∣∣∣∣ ≥ ε

2

∣∣∣∣F
=: I1 + I2.

As to I1, using Lemma 1, we obtain

I1 = P

 max
m≤k≤n

∣∣∣∣∣∣∣ 1
bk

 m∑
i=1

(
Xi − EF Xi

)
∣∣∣∣∣∣∣ ≥ ε

2

∣∣∣∣F 
≤ P

 1
bm

∣∣∣∣∣∣∣
m∑

i=1

(
Xi − EF Xi

) ∣∣∣∣∣∣∣ ≥ ε

2

∣∣∣∣F 
≤ P

 1
bm

max
1≤k≤m

∣∣∣∣∣∣∣
k∑

i=1

(
Xi − EF Xi

) ∣∣∣∣∣∣∣ ≥ ε

2

∣∣∣∣F 



802 Jeong-Yeol Choi, Hye-Young Seo, Jong-Il Baek

≤ c
b2

m
EF

 m∑
i=1

Xi − EF Xi

2

=
c

b2
m

VarF
 m∑

i=1

Xi


= c

 1
b2

m

m∑
i=1

VarF Xi +
1

b2
m

m∑
1≤i,k

CovF (Xi, Xk)

 .
Next, noting that

max
m≤k≤n

∣∣∣∣∑k
i=1

(
Xi − EF Xi

)
−∑m

i=1

(
Xi − EF Xi

)∣∣∣∣
bk

= max
1≤k≤n−m

∣∣∣∣∑k
j=1

(
Xm+ j − EF Xm+ j

) ∣∣∣∣
bm+k

,

and using Lemma 1, we have

I2 = P

 max
m≤k≤n

∣∣∣∣∑k
i=1

(
Xi − EF Xi

)
−∑m

i=1

(
Xi − EF Xi

)∣∣∣∣
bk

≥ ε

2

∣∣∣∣F


= P

 max
1≤k≤n−m

∣∣∣∣∑k
j=1

(
Xm+ j − EF Xm+ j

) ∣∣∣∣
bm+k

≥ ε

2

∣∣∣∣F


≤
cEF

(∑n−m
j=1

(
Xm+ j − EF Xm+ j

))2

b2
m+ j

=
cEF

(∑n
j=m+1

(
X j − EF X j

))2

b2
j

=
c VarF

(∑n
j=m+1 X j

)
b2

j

= c

 n∑
j=m+1

VarF X j

b2
j

+

n∑
m+1≤ j,k

CovF
(
X j, Xn

)
b jbk

 .
The proof is complete. �

As corollary to Theorem 1, we obtain the following results.

Corollary 1. In Theorem 1, if bk = k, k = 1, 2, . . . ,m, then we obtain the following inequality.

P

 max
m≤k≤n

∣∣∣∣∣∣∣∣
∑k

i=1

(
Xm − EF Xi

)
k

∣∣∣∣∣∣∣∣ ≥ ε
∣∣∣∣F


≤ c

 m∑
i=1

VarF Xi

m2 +

n∑
1≤ j,k

CovF
(
X j, Xk

)
m2 +

m∑
j=m+1

VarF X j

j2
+

∑
m+1≤ j,k

CovF
(
X j, Xk

)
jk

 a.s.
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3. Almost Sure Convergence for FFF -Associated Random Variables

In this section, we will give the strong law of large numbers, the three series theorem, integrability of
supremum, and a strong growth rate for F -associated random variables by using the results which we
have obtained in Section 2.

Theorem 2. Let {Xn|n ≥ 1} be a sequence of F -associated random variables such that

∞∑
j=1

VarF X j +

∞∑
1≤ j,k

CovF (X j, Xk) < ∞ a.s.

Then, conditionally on F ,

n∑
j=1

(
X j − EF X j

)
→ 0 a.s. as n→ ∞.

Proof: Without loss of generality, we may assume that EF X j = 0 for all j ≥ 1, and let ε > 0 a.s. be
an F -measurable random variable. Then by Lemma 1 and Theorem 1,

P

max
k,m≥n

∣∣∣∣∣∣∣∣
k∑

j=1

(
X j − EF X j

)
−

m∑
j=1

(
X j − EF X j

)∣∣∣∣∣∣∣∣ ≥ ε
∣∣∣∣F


≤ P

max
k≥n

∣∣∣∣∣∣∣∣
k∑

j=1

(
X j − EF X j

)
−

m∑
j=1

(
X j − EF X j

)∣∣∣∣∣∣∣∣ ≥ ε

2

∣∣∣∣F


+ P

max
m≥n

∣∣∣∣∣∣∣∣
m∑

j=1

(
X j − EF X j

)
−

n∑
j=1

(
X j − EF X j

)∣∣∣∣∣∣∣∣ ≥ ε

2

∣∣∣∣F


≤ c lim
N→∞

P

 max
n≤k≤N

∣∣∣∣∣∣∣∣
k∑

j=1

(
X j − EF X j

)
−

n∑
j=1

(
X j − EF X j

)∣∣∣∣∣∣∣∣ ≥ ε

2

∣∣∣∣F


≤ c lim
N→∞

EF

 max
n≤k≤N

∣∣∣∣∣∣∣∣
k∑

j=1

(
X j − EF X j

)
−

n∑
j=1

(
X j − EF X j

)∣∣∣∣∣∣∣∣
2

≤ c

 ∞∑
j=n

VarF X j +

∞∑
n≤ j,k

CovF
(
X j, Xk

) < ∞ a.s.

Hence, the sequence of F -associated random variables {∑n
j=1(X j − EF X j)|n ≥ 1} is a Cauchy which

implies that
∑n

j=1(X j − EF X j)→ 0 a.s. as n→ ∞.
The proof is complete. �

To prove Theorem 3, we need the following conditional version of Borel-cantelli lemma that is
proved by Majerak et al. (2005).

Lemma 2. Majerak et al. (2005) Let {Ω,F , P} be a probability space and let F be a sub-σ-algebra
ofA. Then the following results hold.
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(i) Let {An|n ≥ 1} be a sequence of events such that
∑∞

n=1 P(An) < ∞. Then
∑∞

n=1 P(An|F ) < ∞ a.s.

(ii) Let {An|n ≥ 1} be a sequence of events and let A = {ω|∑∞n=1 P(An|F ) < ∞} with P(A) < 1. Then,
only finitely many events from the sequence {An ∩ A, n ≥ 1} hold with probability one, namely
P(

∩∞
n=1

∪∞
k=n(Ak

∩
A)) = 0.

Theorem 3. (The three series theorem). Let {Xn|n ≥ 1} be a sequence of F -associated random
variables such that

(1)
∑∞

j=1 VarF Xc
j +

∑∞
1≤ j,k CovF (Xc

j , X
c
k) < ∞ a.s.

(2)
∑∞

j=1 EF Xc
j < ∞ a.s.

(3)
∑∞

j=1 P(|X j| ≥ c|F ) < ∞ for some constant c > 0.

Then
∑n

j=1 X j → 0 a.s. as n→ ∞.

Proof: Let Xc
j = X jI(|X j| ≤ c). Then, by Theorem 2 and (1), it follows that for condition on F ,

n∑
j=1

(
Xc

j − EF Xc
j

)
→ 0 a.s. as n→ ∞,

and from (2),
∑n

j=1 Xc
j → 0 a.s. as.

Which together with (3), implies that n→ ∞.
∞∑
j=1

P
(
X j , Xc

j | F
)
=

∞∑
j=1

P
(
|X j| ≥ c | F

)
< ∞.

Hence, by Lemma 2, we obtain that

n∑
j=1

X j → 0 a.s. as n→ ∞.

The proof is complete. �

Theorem 4. Let {Xn|n ≥ 1} be a sequence of F -associated random variables such that

∞∑
j=1

VarF X j

b2
j

+

∞∑
1≤ j,k

CovF (X j, Xk)
b jbk

< ∞ a.s.

and let {bn|n ≥ 1} be a sequence of positive nondecreasing real numbers. Then,

(a) For 0 < r < 2 and conditionally on F ,

EF sup
n≥1


∑n

i=1

∣∣∣∣(Xi − EF Xi

)∣∣∣∣
bn


r

< ∞ a.s.

(b) If 0 < bn → ∞, then
∑n

i=1(Xi − EF Xi)/bn → 0 a.s. as n→ ∞.



On the Hàjek-Rènyi-Type Inequality for Conditionally Associated Random Variables 805

Proof: Proof of (a). Noting that

EF sup
n≥1


∑n

i=1

∣∣∣∣(Xi − EF Xi

)∣∣∣∣
bn


r

< ∞ a.s.

⇔
∫ ∞

1
P

sup
n≥1

∣∣∣∣∑n
j=1

(
X j − EF X j

)∣∣∣∣
bn

≥ t
1
r

∣∣∣∣F
 dt < ∞ a.s.

by Lemma 1 and Theorem 1, we obtain that

∫ ∞

1
P

sup
n≥1

∣∣∣∣∑n
j=1

(
X j − EF X j

)∣∣∣∣
bn

≥ t
1
r

∣∣∣∣F
 dt

≤ c
∫ ∞

1
t−

2
r

 ∞∑
j=1

VarF X j

b2
j

+
∑

1< j,k

CovF (X j, Xk)
b jbk

 dt

= c

 ∞∑
j=1

VarF X j

b2
j

+

∞∑
1≤ j,k

CovF
(
X j, Xk

)
b jbk

 ∫ ∞

1
t−

2
r < ∞ a.s.

Proof of (b). For ε > 0 a.s. is an F -measurable random variable, by Lemma 1 and Theorem 1,

P

 max
m≤k≤n

∣∣∣∑k
j=1 X j − EF X j

∣∣∣
bk

≥ ε
∣∣∣∣F 

≤ c

EF
(∑m

j=1

(
X j − EF X j

))2

b2
m

+
EF

(∑n
j=m+1

(
X j − EF X j

))2

b2
j


= c


∑m

j=1 VarF X j

b2
m

+
∑

1≤ j,k

CovF
(
X j, Xk

)
b2

m
+

n∑
j=m+1

VarF X j

b2
j

+
∑

m+1≤ j,k

CovF
(
X j, Xk

)
b jbk

 .
But for ε > 0 a.s. is an F -measurable random variable,

P

∪
n=m

max
m≤k≤n

∣∣∣∣∑k
j=1

(
X j − EF X j

)∣∣∣∣
bk

≥ ε
∣∣∣∣F


= lim

n→∞
P

 max
m≤k≤n

∣∣∣∣∑k
j=1

(
X j − EF X j

)∣∣∣∣
bk

≥ ε
∣∣∣∣F


≤ c

EF
(∑m

j=1

(
X j − EF X j

))2

b2
m

+
EF

(∑n
j=m+1

(
X j − EF X j

))2

b2
j


= c


∑m

j=1 VarF X j

b2
m

+
∑

1≤ j,k

CovF
(
X j, Xk

)
b2

m
+

n∑
j=m+1

VarF X j

b2
j

+
∑

m+1≤ j,k

CovF (Xi, Xk)
b jbk

 . (3.1)
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By the kronecker Lemma and
∑∞

j=1 VarF X jb2
j +

∑
1≤ j,k CovF (X j, Xk)/(b jbk) < ∞ a.s., we obtain

that

m∑
j=1

VarF X j

b2
m
+

m∑
1≤ j,k

CovF (X j, Xk)
b2

m
→ 0 as m→ ∞. (3.2)

Hence, by (3.1) and (3.2), we obtain that

lim
n→∞

P

sup
k≥n

∑k
j=1

(
X j − EF X j

)
bk

≥ ε
∣∣∣∣F  = 0,

i.e,

∑n
j=1

(
X j − EF X j

)
bn

→ 0 a.s. as n→ ∞.

The proof is complete. �

Remark 1. Taking bn = 1, we can obtain the result

n∑
j=1

(
X j − EF X j

)
→ 0 a.s. as n→ ∞.

Finally, we obtain the almost sure convergence of weighted sums of sequence of F -associated
random variables.

Theorem 5. Assume that {Xn|n ≥ 1} be a sequence of F -associated random variables satisfying

∞∑
j=1

VarF X j +
∑

1≤ j,k

CovF (X j, Xk) < ∞ a.s.

and let {ani|1 ≤ i ≤ n, n ≥ 1} be a sequence of real numbers such that ani = 0, i > n, supn≥1
∑n

i=1 |ani| <
∞ and let {bn|n ≥ 1} be a sequence of positive nondecreasing real numbers such that 0 < bn → ∞.
Then ∑n

i=1 aniXi

bn
→ 0 a.s. as n→ ∞.

Proof: Note that {aniXi|1 ≤ i ≤ n, n ≥ 1} is a sequence of F -associated random variables and let

S k =

k∑
i=1

Xi

bk
, cni =

bi

bn
(ani − ani+1), for 1 ≤ i ≤ n − 1,

and cnn = ann. Then

n∑
i=1

aniXi

bn
=

n∑
i=1

cniS i,

n∑
i=1

|cni| ≤ 2 sup
n≥1

n∑
i=1

|ani| (3.3)

and lim
n→∞
|cni| = 0, for every fixed 1. (3.4)
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From (3.3) and (3.4), we obtain for every sequence real numbers dn with dn → 0 as n →
∞, ∑n

j=1 cn jd j → 0 as n→ ∞.
Hence, by Theorem 4(b), (3.3) and (3.4), we obtain the result of Theorem 5.
The proof is complete. �

Corollary 2. Let {Xn|n ≥ 1} be a sequence of F -associated random variables EF Xk = 0 and∑∞
j=1 VarF X j +

∑
1≤ j,k CovF (X j, Xk) < ∞ a.s., and {ani|1 ≤ i ≤ n, n ≥ 1} be a sequence of real

numbers with ani = 0, i > n, supn≥1
∑n

i=1 |ani| < ∞. Then for 0 < t < 1,

n∑
i=1

aniXi

n
1
t

→ 0 a.s. as n→ ∞.

Proof: Note that {aniXi|1 ≤ i ≤ n, n ≥ 1} is a sequence of F -associated random variables. Then
taking bn = n1/t, from Theorem 5, we obtain the result of Corollary 2. �
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