• Title/Summary/Keyword: Gyroscopic force

Search Result 26, Processing Time 0.026 seconds

A Study on Dynamic Characteristics of Core in Turbo Air Compressor (터보공기압축기 코어 동특성 연구)

  • Hur, Nam-Soo;Lee, Hyoung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.8
    • /
    • pp.885-893
    • /
    • 2006
  • A dynamic model of turbo air compressor having multi-helical gear pairs is developed by transfer matrix method. The model accounts for the shaft and bearing flexibilities, gyroscopic effects and the force couplings among the transverse, torsion, and axial motions due to gearing. The program which can be used to analyze and predict the vibrational characteristics by the mass unbalance of the rotors and gear transmission error of turbo compressor is developed with this system model We expect this developed program to contribute the reduction of the vibration/noise on turbo compressor in the field of both design and manufacturing and can be used as a basic sub-program for CAD/CAM of low-noised gear teeth also.

A Finite Element Formulation for Vibration Analysis of Rotor Bearing System

  • Park, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4E
    • /
    • pp.37-44
    • /
    • 1996
  • To get accurate vibration analysis of rotor-bearing systems, finite element models of high speed rotating shaft, unbalance disk, and fluid film journal bearing are developed. The study includes the effects of rotary inertia, gyroscopic moment, damping, shear deformation, and axial torque in the same model. It does not include the axial force effect, but the extension is straighforward. The finite elements developed can be used in the analysis design of any type of multiple rotor bearing system. To show the accuracy of the models, numerical examples are demonstrated.

  • PDF

Rotor Dynamics Analysis of a Spindle System for a High speed Grinding Machine (고속 연삭기 주축 시스템의 회전체 역학 해석)

  • 최영휴
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.714-719
    • /
    • 2000
  • This paper describes a transfer matrix approach to analyze the dynamics of a high sped flexible rotor system supported at 2 positions by five ceramic bearings. The rotor system is modelled as lumped parameters in which many factors are considered not only lumped inertia or mass, bending moment, shear force but also gyroscopic effect and unbalance. The equation of motion is derived in the transfer matrix form, from which the eigenvalues equation is also derived. The transfer natural frequencies and modes. The eigenvalues, eigenmodes, campbell diagram, whirling critical speed, whirling modes, and the response of unbalance are calculated and discussed.

  • PDF

An Analytical Investigation on Vibrational Characteristics of Turbo Compressor (터보압축기의 진동 특성에 관한 해석적 연구)

  • 이형우;이동환;박노길
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1069-1077
    • /
    • 1998
  • A dynamic model of turbo compressor having helical gear pairs is developed. The model accounts for the shaft and bearing flexibilities, gyroscopic effects and the force couplings among the transverse, torsion. and axial motions due to gearings. For the mode analysis of turbo compressor, a transfer matrix method is used. The excitation sources caused by the mass unbalances of the rotors and misalignment of the shafts, the transmitted errors of the gearings. and the vane passing frequencies of the Impeller are studied qualitatively. By introducing the perturbation method, the generated forcing frequencies are defined and devided into three groups. With the field data, two critical speeds are analytically found and the corresponding modal characteristics are examined.

  • PDF

Vibration Analysis of Rotor Systems Using Finite Dynamic Elements (동적 유한요소에 의한 회전축 계의 진동 해석)

  • 양보석;황형섭
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.467-475
    • /
    • 1997
  • A rotor-bearing system has been investigated, including internal damping and axial torque using finite dynamic elements. A procedure is presented for dynamic modeling of rotor-bearing system which consist of finite dynamic shaft elements, rigid disk, and bearing and seal. A finite dynamic element model including the effects of rotatory inertia, gyroscopic moments, axial force, and axial torque is developed using the frequency dependent shape function. The natural whirl speeds, stability, and unbalance response of rotor system are calculated on several cases and compared with the conventional finite elements.

  • PDF

Dynamics of a Rotating Cantilever Beam Near Its Critical Angular Speed (임계각속도 주변에서의 회전 외팔보의 동역학)

  • Choe, Chang-Min;Yu, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1231-1237
    • /
    • 2000
  • Dynamics of a rotating cantilever beam near its critical angular speed is investigated in this paper. The external, force is idealized as a periodic function which has the same period as the rotati ng frequency of the beam. The equations of motion are derived and transformed into a dimensionless form. A prescribed spin-up motion is employed for the rotating motion. Numerical study shows that the steady state and the transient responses of the beam are affected by the spin-up time constant and there exists a time constant at which the maximum transient response becomes minimum.

A Study on Development of Railway Reducer for Low Noise/Vibration (소음/진동을 고려한 철도 감속기 개발에 대한 연구)

  • 이형우;박노길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.130-137
    • /
    • 2004
  • A dynamic model of railway reducer is developed by the lumped parameter method. The model accounts for shafts, bearings flexibilities, gyroscopic effects and the force couplings among the transverse and torsion motions due to gearing. Vibration/noise analysis as well as strength of gear teeth, and bearing life are considered. Excitation forces of railway reduction are considered as the mass unbalance of the rotors, misalignment and a function of gear transmission error which comes from the modified tooth surface. A campbell diagram, in which the excitation sources caused by the mass unbalance of the rotors, misalignment and the transmitted errors of the gearing are considered, shows that, at the operating speed, there are not the critical speed. The program which can be used to analyze and predict vibration/noise characteristics by mass unbalance, misalignment and gear transmission error of railway reduction is developed with this system model.

Linear Stability Analysis of a Rotating Disc Brake for Squeal Noise (회전 디스크 브레이크의 스퀼소음에 대한 선형안정성 연구)

  • Kang, Jae-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.1092-1098
    • /
    • 2009
  • The squeal propensity of an automotive disc brake system is studied in the theoretical and computational manner. The rotating disc is in contact with two stationary pads and the nonlinear friction is engaged on the contact surface. The friction-coupled equations of motion are derived in the finite element(FE) of the actual brake disc and pad. From the general definition of friction force, the rotation and in-plane mode effects can be included properly in the brake squeal model. The eigenvalue sensitivity analysis and the mode shape visualization at squeal frequencies are also conducted for the detailed investigation. It is found that the squeal propensity is strongly influenced by rotation effect and the in-plane mode can be involved in squeal generation.

Development of Reducer for Generating Facility of Electric Power for Low Noise/vibration (소음/진동을 고려한 발전설비용 감속기 개발)

  • Lee, Hyoung-Woo;Park, Chul-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.73-82
    • /
    • 2008
  • A dynamic model of reducer for generating facility of electric pourer having bevel gear pair and planetary gear train is developed by lumped method. The model accounts for the shaft and bearing flexibilities, gyroscopic effects and the force couplings among the transverse and torsion motions due to gearing. Vibration/noise analysis as well as strength of bevel gear pair and planetary gear train are considered. Exciting forces of high reducer for generating facility of electric power areconsidered as the mass unbalance of the rotors, misalignment and a function of gear transmission error. A Campbell diagram, in which the excitation sources caused by the mass unbalance of the rotors, misalignment and the transmitted errors of the gearing are considered, shows that, at the operating speed, there are not critical speed.

A Study on Whirling, Tilting, Flying motion of 3.5 inch FDB spindle system (3.5인치 FDB 스핀들 시스템의 Whirling, Tilting, Flying motion에 관한 연구)

  • 오승혁;이상훈;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.579-585
    • /
    • 2003
  • This paper investigates the whirling, tilting and flying motion of a HDD spindle system supported by FDB experimentally. Experimental setup is built to measure the flying, whirling and tilting motion of the HDD spindle system, and three capacitance probes fixed on the xyz-micrometers measure the displacement of a HDD spindle system in the xyz-directions. This research shows that the tilting and whirling motion is mostly dependent on the centrifugal force and the gyroscopic moment due to the unbalanced mass of a HDD spindle. It also shows that the rotating HDD spindle starts to float to the equilibrium position in the z-direction until the weight of the rotating spindle is equal to the supporting pressure generated in the upper and lower thrust bearing.

  • PDF