• Title/Summary/Keyword: Gypsum powder

Search Result 81, Processing Time 0.036 seconds

Initial Strength Characteristics of Cementitious Gypsum-Containing Coal Gasification Slag Powder Replacement Cement Mortar (석고 혼입 석탄가스화 슬래그 미분말 치환 시멘트 모르타르의 초기강도 특성)

  • Cho, Hyeon-Seo;Kim, Min-Hyouck;Lee, Gun-Cheol;Cho, Do-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.207-208
    • /
    • 2019
  • In this study, compressive strength was measured to evaluate the initial strength of cement mortar substituted with coal gasification slag containing desulfurized gypsum, and the reactivity of desulfurized gypsum was confirmed. In order to improve the reactivity, 2% gypsum mixed type and gypsum unfedged type specimens were fabricated and the influence of desulfurization gypsum on compressive strength of coal gasification slag and blast furnace slag fine powder replacement cement mortar was compared and confirmed. As a result of the experiment, it was confirmed that the initial compressive strength of the specimen containing the desulfurized gypsum was improved at the initial stage.

  • PDF

Capping Treatment for the Reduction of Phosphorus Release from Contaminated Sediments of Lakes (호소퇴적물로부터 인 용출 저감을 위한 Capping 처리)

  • Kim, Seog-Ku;Lee, Mi-Kyung;Ahn, Jae-Hwan;Yun, Sang-Leen;Kim, So-Jung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.438-446
    • /
    • 2006
  • A lab-scale batch test was conducted to develop capping materials to reduce the sediment phosphorus in the stagnant water zone of Gyeongancheon in Paldang Lake. The mean grain size(Mz) of sediment in the investigated area was 7.7 ${\phi}$, which is very fine, and the contents of organic carbon($C_{org}$) was 2.4%, which is very high. For the phosphorous release experiment to select the optimal capping material, sand layer, powder-gypsum($CaSO_4{\cdot}2H_2O$), granule-gypsum, complex layer(gypsum+sand) and the control were compared and evaluated in the 150 L reactor for 45 days. In case of the capping with the sand, it was found that the phosphorous from the sediment could be reduced by around 50%. However, it was found that this caused the reduction of the dissolved oxygen in the water column(by less than 3 mg/L) due to the resuspension of sediment and the organic matter decomposition that comes from the generation of $CH_4$ gas in the 1 cm of the sand layer. Therefore, it is likely that the sand layer has to be thickener in case of the sand capping. Powder-gypsum and granule-Gypsum reduced phosphorous release by more than 80%. However, the concentration of ${SO_4}^{2-}$ in the water column increased, making it difficult to apply it to the drinking water protection zone. We developed Fe-Gypsum and $SiO_2$-gypsum materials to reduce the solubility of ${SO_4}^{2-}$. Powder-Gypsum creates the interception film that does not have any aperture on the sediment layer when it is combined with the water. However phosphorous release caused by the generation of $CH_4$ gas may happen at a time when the gypsum layer has the crack. Capping through the complex layer(granule-Gypsum+sand(1 cm)) found to be suitable for the drinking water protection zone because it was effective to prevent phosphorus release. Moreover, this leads to the lower solubility from the concentration of ${SO_4}^{2-}$ into the water column than the powder-Gypsum and granule-Gypsum. The addition of gypsum($CaSO_4{\cdot}2H_2O$) into the sediment can reduce the progress of methanogensis because fast early diagenesis and sufficient supply of ${SO_4}^{2-}$ to the sediment, stimulate the SRB(sulfate reducing bacteria) highly.

Study on the recycling of gypsum board paper generated from construction wastes (폐석고보드지의 재활용 방안 탐색을 위한 기초연구)

  • Lee, Ji-Young;Yun, Kyeong-Tae;Kim, Chul-Hwan;Sung, Yong Joo;Kim, Beong-Ho;Lim, Gi-Baek;Kim, Sun-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.3
    • /
    • pp.20-26
    • /
    • 2013
  • We investigated practical methods of using recycled gypsum board paper in the paper industry. Gypsum board paper is used to produce construction gypsum board, and can be recycled through the recycling process of construction wastes. The experiments were carried out in two ways: One was the substitution of recycled gypsum board papers for KOCC, and the other was the use of recycled gypsum board paper powder. Recycled gypsum board paper was not disintegrated easily, but high temperature and the use of chemicals were able to improve their disintegration. The physical properties of handsheets made of the pulp of recycled gypsum board paper exhibited the same performance level as those made from KOCC except in the parameter of compressive strength. The powder of recycled gypsum board paper was manufactured using a grinder and handsheets were made with the powder and KOCC. The bulk was increased, but the strength properties were decreased by the addition of the powder.

Investigation on the Ratio and Type of Gypsum for Early Strength Improvement of Blast Furnace Slag Powder (고로슬래그 미분말의 초기강도 향상을 위한 석고 종류 및 첨가량 검토)

  • Jeong, Yong;Yoo, Jung-Hoon;Shin, Jae-Kyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.106-113
    • /
    • 2010
  • We were tried to draw a conclusions related to additive amount of gypsum in blast furnace slag in the study. In the result, fluidity of concrete decreased with an increase of gypsum and was not satisfied with KS standard in the cases of natural gypsum and limestone sludge more than 2.6% addition. Early compressive strength of concrete containing desulfurized gypsum, fluosilicic acid gypsum and phosphoric acid gypsum were improved respectively but calcined lime sludge and lime powder were not influenced on strength. If available, additive gypsum should be managed less than 2.0% owing to low fluidity. In low temperature, fluosilicic acid gypsum was to advantages on the fluidity while desulfurized gypsum was in high temperature. There also are conclusions that additive gypsum was to be 2.6% in winter and in summer; it's to be fewer than 2.6%.

  • PDF

Effect of Gypsum Mixture on Activation of Coal Gasification Slag (석고 혼입이 석탄가스화 슬래그의 활성화에 미치는 영향)

  • Cho, Hyeon-Seo;Kim, Min-Hyouck;Lee, Gun-Cheol;Cho, Do-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.17-18
    • /
    • 2019
  • In this study, the initial strength reduction of coal gasification slag fine powders was confirmed through previous studies when used in cement formulations. It is also confirmed that the blast furnace slag is mixed with cementitious coal blast furnace slag, which is similar to coal gasification slag, to incorporate gypsum in order to prevent initial strength deterioration. In order to analyze the reactivity of coal gasification slag by desulfurization gypsum, the formation of hydrates and their reactivity at early ages were confirmed by electron microscope. In order to confirm the reactivity, the gypsum samples were prepared with unincorporated type and 2% mixed type. Experimental results showed that 2% of the desulfurized gypsum specimens reacted more actively than the uninjured ones.

  • PDF

Preparation of Calcium Sulfate Hemihydrate Using Stainless Refinery Sludge and Waste Sulfuric Acid

  • Eun, Hee-Tai;Ahn, Ji-Whan;Kim, Hwan;Kim, Jang-Su;Sung, Ghee-Woong
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.432-436
    • /
    • 2001
  • In this study, calcium sulfate(gypsum) powder was obtained using waste sulfuric acid and stainless refinery sludge by- produced from chemical reagent and the iron industry, by the neutralization of waste sulfuric acid. As variables for the experiment the mole ratio of the H$_2$SO$_4$ : Ca(OH)$_2$, the pH, the reaction temperature and time, the amount of catalyst were used. The crystal shape and microstructure of obtained powder were observed by XRD and SEM, and the thermal property was investigated by DTA. As the NaCl is added 0~20wt% as a catalyst to the H$_2$SO$_4$ : Ca(OH)$_2$, system it can be found that the crystal shape goes through the processes as follows : gypsum dihydratlongrightarrowgypsum hemihydrate+gypsum dihydratelongrightarrowgypsum hemihydrate. And gypsum hemihydrate is $\beta$-type as the result of DTA. As waste sulfuric acid and stainless refinery sludge were used, the pH of reacted solution (which was 0.8) was rapidly raised up to 8~9 by the addition of stainless sludge and gypsum dihydrate was produced as a by-product. Therefore, it was found that stainless refinery sludge is sufficiently applicable for the neutralization of waste sulfuric acid.

  • PDF

Improvement of Early age Concrete Strength Using Blast Furnace Slag Powder (콘크리트의 초기강도 향상을 위한 고로슬래그 미분말의 사용에 관한 실험적 연구)

  • Yoo, Jang-Won;Lee, Ju-Sun;Park, Byung-Kwan;Pei, Chang-Chun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.77-80
    • /
    • 2009
  • The purpose of the study was to examine engineering characteristics due to fine particle cement and gypsum contents to improve early strength of concrete substituted blast furnace slag powder. The results were as follows. Above all, For fluidity, generally all mixtures had lower fluidity than Plain mixture and was not satisfied target scope, but for mixture substituted the gypsum showed a little increasing trend. For air content, generally all mixtures compared to Plain mixture had decreasing tendency. However, all mixtures were satisfied target scope. For compressive strength, long-term strength was better than early strength according to ternary blast furnace slag contents was increased. For complex mixture was better than individual use of gypsum and fine particle cement.

  • PDF

Experimental study on chemical activation of recycled powder as a cementitious material in mine paste backfilling

  • Liu, Yin;Lu, Chang;Zhang, Haoqiang;Li, Jinping
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.341-349
    • /
    • 2016
  • To improve the utilization rate of construction waste as mine backfilling materials, this paper investigated the feasibility of using recycled powder as mine paste backfilling cementitious material, and studied the pozzolanic activity of recycled construction waste powder. In this study, alkali-calcium-sulfur served as the activation principle and an orthogonal test plan was performed to analyze the impact of the early strength agent, quick lime, and gypsum on the pozzolanic activity of the recycled powder. Our results indicated that in descending order, early strength agent > quick lime > gypsum affected the strength of the backfilling paste with recycled powder as a cementitious material during early phases. The strength during late phases was affected by, in descending order, quick lime > gypsum > early strength agent. Using setting time and early compressive strength as an analysis index as well as an extreme difference analysis, it was found that the optimal ratio of recycled powder cementitious material for mine paste backfilling was recycled powder:quick lime:gypsum:early strength agent at 78%:10%:8%:4%. X-ray diffraction analysis and scanning electron microscope were used to show that the hydration products of recycled powder cementitious material at the initial stages were mainly CH and ettringite. As hydration time increased, more and more recycled powder was activated. It mainly became calcium silicate hydrate, calcium aluminate hydrate, etc. In summary, recycled powder exhibited potential pozzolanic activities. When activated, it could replace cementitious materials to be used in mine backfill.

A Study on the Compensation of Early Age Strength in Mortar and Concrete using Blast Furnace Slag Powder (슬래그 미분말을 사용한 모르타르 및 콘크리트의 초기강도 보상에 관한 연구)

  • 김성수;연영훈;이성수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.559-562
    • /
    • 2000
  • This study is about the compensation of early age strength on mortar and concrete admixed with blast-furnace slag powder. For study, we have used fine powder of gypsum and kiln dust from cement factory. According to the test results, we have obtained proper mixing ratio of slag powder, gypsum and kiln dust for the compensation of early age strength on mortar and concrete property.

  • PDF

Improvement of Strength Characteristics in ALC added Silica Powder and Gypsum (규석 분말 및 석고 혼입에 따른 경량기포콘크리트의 강도특성 개선)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.128-135
    • /
    • 2012
  • Autoclaved lightweight concrete, also known as autoclaved aerated concrete(AAC) or autoclaved cellular concrete (ACC), is made with fine silica powder, quik lime, cement, and an Al powder. ALC contains 70~80% air. The lightweight material offers excellent sound and thermal insulation, and like all cement-based materials, is strong and fire resistant. However, ALC have high water absorption, low compressive strength and popout the origin of the low surface strength in its properties. These properties make troubles under construction such as cracking and popout. Thus, this study is to improve the fundamental strength by controls of increasing of admixtures, gypsum and silica powder size. Admixtures make use of metakaolin and silica fume. From the test result, the ALC using admixture have a good fundamental properties compared with plain ALC. Compressive strength, specific strength and abrasion's ratio were improved depending on increasing admixtures ratio's, gypsum and silica powder size.

  • PDF