• Title/Summary/Keyword: Gut microbiome dysbiosis

Search Result 19, Processing Time 0.021 seconds

A review on the gut microbiome dysbiosis in diabetic patients and the improvement effects of traditional herbal medicine treatments (당뇨병 환자의 장내미생물 변화와 한의소재에 의한 개선효과 논문고찰)

  • Hye-Min Yi;Sun-Young Hwang;Mee-Hyun Lee
    • The Korea Journal of Herbology
    • /
    • v.39 no.5
    • /
    • pp.39-51
    • /
    • 2024
  • Objectives : Diabetes is a chronic disease that is rapidly increasing worldwide, and recent studies suggest that gut microbiome dysbiosis may be one of the main reasons for diabetes. Therefore, we have reviewed the relationship between diabetes and microbiome changes and their regulation by treatment of traditional herbal medicine. Methods : This review was prepared by querying in PubMed with the key words such as diabetes, microbiome and traditional herbal medicine. The search was conducted for research articles including both in vivo preclinical reports and clinical studies, up to July 22, 2024 within the past five years. Results : Gut microbiota dysbiosis is implicated in diabetes through major mechanisms, including increased endotoxin (LPS), decreased short-chain fatty acid (SCFA) production, reduced gut microbiota diversity, and impaired bile acid metabolism in mouse models and human cohorts. Traditional herbal medicines including berberine and bicalein and formulations such as Gegen Qinlian Decoction, Banxia Xiexin Decoction, and Huang-Lian-Jie-Du-Decoction improved diabetes by increasing the gut microbiota diversity and SCFA generation. Conclusion : Gut microbiota imbalance plays an important role in the onset and progression of diabetes especially type 2 diabetes which is improved by traditional herbal medicines promoting the growth of beneficial microbiome and suppressing pathogenic abundance. It may provide a promising prospect for more effective diabetes management and treatment strategies.

Gut Microbiome Alterations and Functional Prediction in Chronic Spontaneous Urticaria Patients

  • Zhang, Xinyue;Zhang, Jun;Chu, Zhaowei;Shi, Linjing;Geng, Songmei;Guo, Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.747-755
    • /
    • 2021
  • The effects of the gut microbiome on both allergy and autoimmunity in dermatological diseases have been indicated in several recent studies. Chronic spontaneous urticaria (CSU) is a disease involving allergy and autoimmunity, and there is no report detailing the role of microbiota alterations in its development. This study was performed to identify the fecal microbial composition of CSU patients and investigate the different compositions and potential genetic functions on the fecal microbiota between CSU patients and normal controls. The gut microbiota of CSU patients and healthy individuals were obtained by 16s rRNA massive sequencing. Gut microbiota diversity and composition were compared, and bioinformatics analysis of the differences was performed. The gut microbiota composition results showed that Firmicutes, Bacteroidetes, Proteobacteria, and Verrucomicrobia were dominant microbiota in CSU patients. The differential analysis showed that relative abundance of the Proteobacteria (p = 0.03), Bacilli (p = 0.04), Enterobacterales (p = 0.03), Enterobacteriaceae (p = 0.03) was significantly increased in CSU patients. In contrast, the relative abundance of Megamonas, Megasphaera, and Dialister (all p < 0.05) in these patients significantly decreased compared with healthy controls. The different microbiological compositions impacted normal gastrointestinal functions based on function prediction, resulting in abnormal pathways, including transport and metabolism. We found CSU patients exhibited gut microbiota dysbiosis compared with healthy controls. Our results indicated CSU is associated with gut microbiota dysbiosis and pointed out that the bacterial taxa increased in CSU patients, which might be involved in the pathogenesis of CSU. These results provided clues for future microbial-based therapies on CSU.

Diet-Induced Gut Dysbiosis and Leaky Gut Syndrome

  • Yu-Rim Chae;Yu Ra Lee;Young-Soo Kim;Ho-Young Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.747-756
    • /
    • 2024
  • Chronic gut inflammation promotes the development of metabolic diseases such as obesity. There is growing evidence which suggests that dysbiosis in gut microbiota and metabolites disrupt the integrity of the intestinal barrier and significantly impact the level of inflammation in various tissues, including the liver and adipose tissues. Moreover, dietary sources are connected to the development of leaky gut syndrome through their interaction with the gut microbiota. This review examines the effects of these factors on intestinal microorganisms and the communication pathways between the gut-liver and gut-brain axis. The consumption of diets rich in fats and carbohydrates has been found to weaken the adherence of tight junction proteins in the gastrointestinal tract. Consequently, this allows endotoxins, such as lipopolysaccharides produced by detrimental bacteria, to permeate through portal veins, leading to metabolic endotoxemia and alterations in the gut microbiome composition with reduced production of metabolites, such as short-chain fatty acids. However, the precise correlation between gut microbiota and alternative sweeteners remains uncertain, necessitating further investigation. This study highlights the significance of exploring the impact of diet on gut microbiota and the underlying mechanisms in the gut-liver and gut-brain axis. Nevertheless, limited research on the gut-liver axis poses challenges in comprehending the intricate connections between diet and the gut-brain axis. This underscores the need for comprehensive studies to elucidate the intricate gut-brain mechanisms underlying intestinal health and microbiota.

Aging effects on the diurnal patterns of gut microbial composition in male and female mice

  • Kim, Hyun-Jung;Moon, Chang Mo;Kang, Jihee Lee;Park, Eun-Mi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.575-583
    • /
    • 2021
  • Composition of the gut microbiota changes with aging and plays an important role in age-associated disease such as metabolic syndrome, cancer, and neurodegeneration. The gut microbiota composition oscillates through the day, and the disruption of their diurnal rhythm results in gut dysbiosis leading to metabolic and immune dysfunctions. It is well documented that circadian rhythm changes with age in several biological functions such as sleep, body temperature, and hormone secretion. However, it is not defined whether the diurnal pattern of gut microbial composition is affected by aging. To evaluate aging effects on the diurnal pattern of the gut microbiome, we evaluated the taxa profiles of cecal contents obtained from young and aged mice of both sexes at daytime and nighttime points by 16S rRNA gene sequencing. At the phylum level, the ratio of Firmicutes to Bacteroidetes and the relative abundances of Verrucomicrobia and Cyanobacteria were increased in aged male mice at night compared with that of young male mice. Meanwhile, the relative abundances of Sutterellaceae, Alloprevotella, Lachnospiraceae UCG-001, and Parasutterella increased in aged female mice at night compared with that of young female mice. The Lachnospiraceae NK4A136 group relative abundance increased in aged mice of both sexes but at opposite time points. These results showed the changes in diurnal patterns of gut microbial composition with aging, which varied depending on the sex of the host. We suggest that disturbed diurnal patterns of the gut microbiome can be a factor for the underlying mechanism of age-associated gut dysbiosis.

Stunting and Gut Microbiota: A Literature Review

  • Jessy Hardjo;Nathasha Brigitta Selene
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.27 no.3
    • /
    • pp.137-145
    • /
    • 2024
  • Stunting, a condition characterized by impaired growth and development in children, remains a major public health concern worldwide. Over the past decade, emerging evidence has shed light on the potential role of gut microbiota modulation in stunting. Gut microbiota dysbiosis has been linked to impaired nutrient absorption, chronic inflammation, altered short-chain fatty acid production, and perturbed hormonal and signaling pathways, all of which may hinder optimal growth in children. This review aims to provide a comprehensive analysis of existing research exploring the bidirectional relationship between stunting and the gut microbiota. Although stunting can alter the gut microbial community, microbiota dysbiosis may exacerbate it, forming a vicious cycle that sustains the condition. The need for effective preventive and therapeutic strategies targeting the gut microbiota to combat stunting is also discussed. Nutritional interventions, probiotics, and prebiotics are among the most promising approaches to modulate the gut microbiota and potentially ameliorate stunting outcomes. Ultimately, a better understanding of the gut microbiota-stunting nexus is vital for guiding evidence-based interventions that can improve the growth and development trajectory of children worldwide, making substantial strides toward reducing the burden of stunting in vulnerable populations.

Difference in the Gut Microbiome between Ovariectomy-Induced Obesity and Diet-Induced Obesity

  • Choi, Sungmi;Hwang, Yu-Jin;Shin, Min-Jeong;Yi, Hana
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2228-2236
    • /
    • 2017
  • During menopausal transition, the imbalance of estrogen causes body weight gain. Although gut microbiome dysbiosis has been reported in postmenopausal obesity, it is not clear whether there is any difference in the microbiome profile between dietary-induced obesity and postmenopausal obesity. Therefore, in this study, we analyzed intestinal samples from ovariectomized mice and compared them with those of mice with high-fat diet-induced obesity. To further evaluate the presence of menopause-specific bacteria-gene interactions, we also analyzed the liver transcriptome. Investigation of the 16S rRNA V3-V4 region amplicon sequence profile revealed that menopausal obesity and dietary obesity resulted in similar gut microbiome structures. However, Bifidobacterium animalis was exclusively observed in the ovariectomized mice, which indicated that menopausal obesity resulted in a different intestinal microbiome than dietary obesity. Additionally, several bacterial taxa (Dorea species, Akkermansia muciniphila, and Desulfovibrio species) were found when the ovariectomized mice were treated with a high-fat diet. A significant correlation between the above-mentioned menopause-specific bacteria and the genes for female hormone metabolism was also observed, suggesting the possibility of bacteria-gene interactions in menopausal obesity. Our findings revealed the characteristics of the intestinal microbiome in menopausal obesity in the mouse model, which is very similar to the dietary obesity microbiome but having its own diagnostic bacteria.

Potential Prebiotic Properties of Whey Protein and Glycomacropeptide in Gut Microbiome

  • Bryna Rackerby;Hoang Ngoc M. Le;Avery Haymowicz;David C. Dallas;Si Hong Park
    • Food Science of Animal Resources
    • /
    • v.44 no.2
    • /
    • pp.299-308
    • /
    • 2024
  • Proteins in whey have prebiotic and antimicrobial properties. Whey protein comprises numerous bioactive proteins and peptides, including glycomacropeptide (GMP), a hydrophilic casein peptide that separates with the whey fraction during cheese making. GMP has traditionally been used as a protein source for individuals with phenylketonuria and also has prebiotic (supporting the growth of Bifidobacterium and lactic acid bacteria) and antimicrobial activities. GMP supplementation may help positively modulate the gut microbiome, help treat dysbiosis-related gastrointestinal disorders and improve overall health in consumers.

Alterations in immunized antigens of Anisakis pegreffii by ampicillin-induced gut microbiome changes in mice

  • Myungjun Kim;Jun Ho Choi;Myung-hee Yi;Singeun Oh;Tai-Soon Yong;Ju Yeong Kim
    • Parasites, Hosts and Diseases
    • /
    • v.62 no.3
    • /
    • pp.351-364
    • /
    • 2024
  • The gut microbiome plays an essential role in host immune responses, including allergic reactions. However, commensal gut microbiota is extremely sensitive to antibiotics and excessive usage can cause microbial dysbiosis. Herein, we investigated how changes in the gut microbiome induced by ampicillin affected the production of IgG1 and IgG2a antibodies in mice subsequently exposed to Anisakis pegreffii antigens. Ampicillin treatment caused a notable change in the gut microbiome as shown by changes in both alpha and beta diversity indexes. In a 1-dimensional immunoblot using Anisakis-specific anti-mouse IgG1, a 56-kDa band corresponding to an unnamed Anisakis protein was detected using mass spectrometry analysis only in ampicillin-treated mice. In the Anisakis-specific anti-mouse IgG2a-probed immunoblot, a 70-kDa band corresponding to heat shock protein 70 (HSP70) was only detected in ampicillin-treated and Anisakis-immunized mice. A 2-dimensional immunoblot against Anisakis extract with immunized mouse sera demonstrated altered spot patterns in both groups. Our results showed that ampicillin treatment altered the gut microbiome composition in mice, changing the immunization response to antigens from A. pegreffii. This research could serve as a basis for developing vaccines or allergy immunotherapies against parasitic infections.

Bacterial Growth Modulatory Effects of Two Branched-Chain Hydroxy Acids and Their Production Level by Gut Microbiota

  • Chan Hyuk Hwang;Su-Hyun Kim;Choong Hwan Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1314-1321
    • /
    • 2024
  • Branched-chain hydroxy acids (BCHAs), produced by lactic acid bacteria, have recently been suggested as bioactive compounds contributing to the systemic metabolism and modulation of the gut microbiome. However, the relationship between BCHAs and gut microbiome remains unclear. In this study, we investigated the effects of BCHAs on the growth of seven different families in the gut microbiota. Based on in vitro screening, both 2-hydroxyisovaleric acid (HIVA) and 2-hydroxyisocaproic acid (HICA) stimulated the growth of Lactobacillaceae and Bifidobacteriaceae, with HIVA showing a significant growth promotion. Additionally, we observed not only the growth promotion of probiotic Lactobacillaceae strains but also growth inhibition of pathogenic B. fragilis in a dose-dependent manner. The production of HIVA and HICA varied depending on the family of the gut microbiota and was relatively high in case of Lactobacillaceae and Lachnosporaceae. Furthermore, HIVA and HICA production by each strain positively correlated with their growth variation. These results demonstrated gut microbiota-derived BCHAs as active metabolites that have bacterial growth modulatory effects. We suggest that BCHAs can be utilized as active metabolites, potentially contributing to the treatment of diseases associated with gut dysbiosis.

Alteration of Lung and Gut Microbiota in IL-13-Transgenic Mice Simulating Chronic Asthma

  • Sohn, Kyoung-Hee;Baek, Min-gyung;Choi, Sung-Mi;Bae, Boram;Kim, Ruth Yuldam;Kim, Young-Chan;Kim, Hye-Young;Yi, Hana;Kang, Hye-Ryun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1819-1826
    • /
    • 2020
  • Increasing evidence suggests a potential role of microbial colonization in the inception of chronic airway diseases. However, it is not clear whether the lung and gut microbiome dysbiosis is coincidental or a result of mutual interaction. In this study, we investigated the airway microbiome in interleukin 13 (IL-13)-rich lung environment and related alterations of the gut microbiome. IL-13-overexpressing transgenic (TG) mice presented enhanced eosinophilic inflammatory responses and mucus production, together with airway hyperresponsiveness and subepithelial fibrosis. While bronchoalveolar lavage fluid and cecum samples obtained from 10-week-old IL-13 TG mice and their C57BL/6 wild-type (WT) littermates showed no significant differences in alpha diversity of lung and gut microbiome, they presented altered beta diversity in both lung and gut microbiota in the IL-13 TG mice compared to the WT mice. Lung-specific IL-13 overexpression also altered the composition of the gut as well as the lung microbiome. In particular, IL-13 TG mice showed an increased proportion of Proteobacteria and Cyanobacteria and a decreased amount of Bacteroidetes in the lungs, and depletion of Firmicutes and Proteobacteria in the gut. The patterns of polymicrobial interaction within the lung microbiota were different between WT and IL-13 TG mice. For instance, in IL-13 TG mice, lung Mesorhizobium significantly affected the alpha diversity of both lung and gut microbiomes. In summary, chronic asthma-like pathologic changes can alter the lung microbiota and affect the gut microbiome. These findings suggest that the lung-gut microbial axis might actually work in asthma.