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Introduction
The microbiota is a diverse and intricate ecosystem primarily composed of bacteria but also encompassing

viruses, fungi, protozoa, and archaea [1]. These microorganisms play a crucial role in multiple facets of human
physiology, encompassing dietary habits, metabolic functions, defense against pathogens, safeguarding the
intestinal barrier, maturation of the immune system, and the preservation of immune equilibrium [2]. The gut
microbiota has a significant impact on the overall health of its host, and an imbalance in the gut microbiota,
known as gut dysbiosis, is now widely acknowledged as a prominent characteristic of obesity and various
metabolic disorders [3]. This review provides a concise overview of research findings that suggest a possible
connection between diet and the development of leaky gut syndrome, obesity, and metabolic disorders through
the modulation of the gut microbiota.

Relationship between Diet and Microbiota
In human gut microflora, there are around 1013 different types of microorganisms in the intestinal mucosa.

Firmicutes and Bacteroidetes constitute approximately 90% of the gut microbiome, with Actinobacteria,
Proteobacteria, Fusobacteria, and Verrucomicrobia constituting the other major phyla of gut bacteria [4]. Of these,
there are 500–1000 different species (spp.). Bacteria are prevalent, and their combined genomes are expected to
include 100 times as many genes as the mammalian genotype [5].

The microbiota has numerous effects on an individual's well-being, including the activation of the immune
system, the breakdown of dietary fibers, increased function and motility of the gastrointestinal tract, and the
facilitation of nutrient absorption, as well as protection against infections [6, 7]. Numerous human metabolic
processes and clinical parameters could be influenced by gut microbes [8]. The human diet and gut microbiota are
closely correlated, and with societal development, there has been an increase in the consumption of refined
carbohydrates, Western-style high-fat diets (HFDs), and sugar. Notably, recent research suggests that the diet-
microbiota interplay is becoming increasingly personalized, highlighting the need for tailored adjustments based
on individual circumstances [9].

Chronic gut inflammation promotes the development of metabolic diseases such as obesity. There is
growing evidence which suggests that dysbiosis in gut microbiota and metabolites disrupt the
integrity of the intestinal barrier and significantly impact the level of inflammation in various
tissues, including the liver and adipose tissues. Moreover, dietary sources are connected to the
development of leaky gut syndrome through their interaction with the gut microbiota. This review
examines the effects of these factors on intestinal microorganisms and the communication pathways
between the gut-liver and gut-brain axis. The consumption of diets rich in fats and carbohydrates
has been found to weaken the adherence of tight junction proteins in the gastrointestinal tract.
Consequently, this allows endotoxins, such as lipopolysaccharides produced by detrimental bacteria,
to permeate through portal veins, leading to metabolic endotoxemia and alterations in the gut
microbiome composition with reduced production of metabolites, such as short-chain fatty acids.
However, the precise correlation between gut microbiota and alternative sweeteners remains
uncertain, necessitating further investigation. This study highlights the significance of exploring the
impact of diet on gut microbiota and the underlying mechanisms in the gut-liver and gut-brain axis.
Nevertheless, limited research on the gut-liver axis poses challenges in comprehending the intricate
connections between diet and the gut-brain axis. This underscores the need for comprehensive
studies to elucidate the intricate gut-brain mechanisms underlying intestinal health and microbiota.
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HFD
HFDs are known to not only induce obesity but also cause gut dysbiosis [10]. An imbalance in the gut

microbiota can inhibit the expression of proteins responsible for maintaining the integrity of intestinal tight
junctions (TJs). By upregulating the expression of TJ proteins, probiotic strains such as Lactobacillus and
Bifidobacterium can potentially mitigate the progression of autoimmune disorders in individuals with genetic
predispositions [11]. Consequently, this disruption can result in an increased translocation of lipopolysaccharides
(LPSs) from the gut into the bloodstream, resulting in a condition commonly referred to as metabolic
endotoxemia [12]. Changes in the composition of gut microbiota populations stimulate the Toll-like receptor
signaling pathway, resulting in heightened permeability of the intestines to endotoxins, specifically LPSs.
Consequently, this process facilitates the movement of LPSs from the intestines into the bloodstream [13]. These
occurrences result in a disparity between the host and microbial communities, compromise barrier function, and
are characterized by abnormally high intestinal permeability and altered epithelial TJ molecule expression [14].

Furthermore, HFD induced bile acid production compromises the integrity of the intestinal mucosal barrier. Bile
acids facilitate the emulsification of luminal fat, expanding the overall surface area for lipase-driven digestion of
micelles, enabling absorption by intestinal epithelial cells [15]. HFD elevates intestinal permeability through direct
stimulation of proinflammatory signaling cascades and indirectly by upregulating barrier-disrupting cytokines such as
TNFα, interleukin (IL)-1β [16], IL-6 [17], and interferon γ [18], while concurrently reducing the levels of barrier-
forming cytokines (IL-10 [19], IL-17 [20] and IL-22 [21]). Ultimately, an HFD unfavorably alters the composition of
intestinal mucus and promotes the colonization of the gut microbiota by species known to disrupt the intestinal barrier.
In addition to various TJs that impede the permeation of luminal contents, the intestinal barrier incorporates a
superficial unstirred mucus layer (SUML). This layer envelops intestinal epithelial cells with a protective environment
containing bicarbonate, antimicrobials, IgA, glycoproteins, and lubricant. Notably, studies revealed the indispensable
nature of the SUML in gut health, as mice deficient in mucin 2 (MUC2), a glycoprotein constituting the majority of the
mucus, exhibited spontaneous colitis, resembling the presentation seen in dextran sulfate-sodium–induced colitis [22].

Junctional adhesion molecules (JAMs) belong to a subset within the immunoglobulin superfamily of adhesion
receptors, playing diverse physiological roles in the development and maintenance of homeostasis in vertebrates
[23]. While JAM-A is not restricted solely to tight junctions, it is also present along the lateral membrane domain, yet
it exhibits a significant enrichment at the tight junctions [24], and JAM-A serves to regulate the barrier function of
the epithelium. Several research studies have demonstrated that HFDs elevate the levels of endotoxin in the body's
circulation, leading to a decrease in the expression of tight junction (TJ) proteins such as zonula occludens (ZO)-1,
occludin, and claudin as they interact with the barrier [25, 26]. Furthermore, hazardous chemicals can enter the
intestine due to malfunctions of the intestinal barrier, impairing the immune system and promoting inflammation in
the intestine, which can also lead to inflammatory bowel disease (IBD) [14]. Several studies have highlighted that an
HFD has a negative impact on human health based on its association with obesity, type 2 diabetes, hypertension, IBD,
leaky gut, and cardiovascular diseases [25, 27-29]. Previous studies have shown that consistent dietary fat
consumption can lead to metabolic disorders, including insulin resistance and elevated levels of triglycerides (TGs),
total cholesterol (TC), low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and serum glucose
[30]. In rodent studies, feeding with a 60% fat diet may induce inflammation in adipose tissues, which is a significant
component of metabolic syndrome [31]. Moreover, the microbiota composition increases the Firmicutes/Bacteroides
ratio of the intestinal microbial group, and the abundance of beneficial bacteria in the intestines, such as Lactobacillus
and Akkermansia, tends to decrease [25]. Numerous research studies have documented alterations in the intestinal
microbiota of mice subjected to a HFD. The majority of these investigations have demonstrated a notable elevation in
the abundance of Firmicutes, coupled with a tendency towards a reduction in Bacteroides. Additionally, an
augmentation in the presence of Oscillibacter and Desulfovibrionaceae, both of which are Gram-negative bacteria
known for endotoxin production, was observed [32, 33]. Conversely, a decline in the levels of Cytophaga and
Akkermansia, members of the Bacteriodetes and Verrumicrobia phylum, was also noted [34]. 

Table 1 presents various HFD-induced dietary interventions in mouse studies regarding the development of
metabolic disorders, alterations in gut microbiota, changes in intestinal permeability, and modifications in TJ proteins.

High-Carbohydrate Diet (HCD)
Carbohydrates can be categorized into two groups: digestible and non-digestible carbohydrates. Digestible

carbohydrates encompass starch and various sugars, such as fructose, glucose, lactose, and sucrose [47].
Carbohydrates are one of the primary sources of energy for humans. However, consuming excessive amounts of
refined carbohydrates and added sugar can disrupt the balance of the intestinal microbiota, leading to gut
dysbiosis. These types of carbohydrates are easily digestible and can promote the growth of beneficial bacteria
such as Lactobacillus, Bifidobacterium, and Akkermansia. Recent research has shown that consuming highly
refined carbohydrates can increase the production of proinflammatory cytokines and decrease the gene
expression of TJ proteins [48-50]. Also, multiple research studies have demonstrated that the gut microbiota of
mice fed a HCD undergoes changes, including an increase in the Proteobacteria phylum [51]. The presence of
Desulfovibrionaceae was notably higher in the cecal content of the glucose group, suggesting that consuming
glucose leads to a shift in microbiota composition, leading to a pro-inflammatory profile [52]. Consuming mono-
and disaccharides such as glucose, fructose, and sucrose can result in dyslipidemia and comparatively higher
blood glucose levels, endotoxin levels, fat mass, and glucose intolerance [49]. A study showed that when C57BL/6J
mice were fed with 30% of fructose for 16 weeks, non-alcoholic fatty liver and liver inflammation were induced
[53]. These conditions also accompany various chronic diseases such as obesity, type 2 diabetes, IBD,
cardiovascular diseases, and dysbiosis [49, 50]. 
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Table 1. Metabolic disorders, alterations in gut microbiota and permeability, and changes in tight junction
(TJ) proteins confirmed through high-fat diet (HFD)-induced dietary interventions in mouse studies.

Animal Diet
composition Duration Disorder Disease Microbiota Gut 

permeability
TJ protein/

mucin 
production

Reference

C57BL/6J 
mice, male

60% HFD HFD for 
5 weeks; 
low-fat 
diet for 2 
weeks

Fasting blood 
glucose, hepatic 
lipid accumulation, 
hepatic TG ↑

_ Firmicutes/
Bacteroidetes (F/B) 
ratio ↑

↑ _ [35]

C57BL/6 
mice, male

60% HFD 10 
weeks

HDL ↓,
gut barrier 
dysfunction, 
hyperlipemia, TG/
TC/LDL ↑

Obesity Clostridium sensu 
stricto 1 ↑

_ _ [28]

C57BL/6, 
male

60% HFD 4 weeks Insulin sensitivity, 
glucose tolerance ↑

Obesity Bacteroidal 
Clostridiales spp ↑ 
Bacteroidal ↓

_ _ [36]

C57BL/6J 
mice, male

60% HFD 8 weeks Insulin resistance, 
hyperglycemia ↑

Obesity, type 2 
diabetes

Akkermansia ↓ ↑ Goblet cells 
number↓

[37]

C57BL/6J 
mice, male

60% HFD 4 weeks Glucose 
intolerance ↑

Metabolic 
disease, obesity, 
type 2 diabetes

Clostridia class, 
Bacteroidales S24-7 
family, and 
Candidatus 
arthromitus ↓
Erysipelotrichi class, 
Desulfovibrionales ↑

↑ Claudin-7↓ [38]

C57BL/6J 
mice, male

60% HFD 20 
weeks

Glucose 
intolerance, insulin 
resistance, adipose 
tissue 
inflammation ↑

_ Bilophila 
wadsworthia spp. ↑

↑ Claudin-1, 
occludin ↓

[39]

C57BL/6J 
mice, 
female

60% HFD 8 or 12 
weeks

HOMA-IR, insulin 
resistance ↑

_ Bacteroidetes: 
Firmicutes ↑

↑ ZO-1 ↓ [32]

C57BL/6J 
mice, male

60% HFD 120 days Insulin resistance, 
hyperglycemia, 
hepatic lipid 
accumulation,
TG/TC ↑

Obesity Bifidobacterium 
genus ↓, 
Enterobacteriaceae 
family ↑

↑ Micelles per 
enterocyte ↑

[40]

Swiss 
albino 
mice, male

60% HFD 8 weeks Insulin resistance, 
hepatic lipid 
accumulation ↑

_ _ ↑ ZO-1, claudin-
2, occludin ↓

[26]

SD rats, 
male

45% HFD 
with 1.25% 
cholesterol

8 weeks TG/TC/LDL/AST/
ALT ↑

Hepatic 
steatosis, 
hyperlipidemia

Firmicutes, 
Desulfovibrionaceae 
↑

↑ ZO-1, Muc2, 
occludin ↓

[33]

Swiss 
mice, male

45% 
Unmodified 
fat

8 weeks Glucose 
homeostasis ↑

Cardiovascular 
disease, 
dyslipidemia, 
atherogenesis

_ ↑ Goblet cells, 
Muc2 ↓

[41]

C57BL/6 J 
mice, male

60% HFD 5 weeks Insulin resistance, 
basal glycemia ↑

Hypertension Proteobacteria, F/B 
ratio ↑, Akkermansia 
↓

↑ ZO-1, Muc2, 
occludin, 
Muc3 ↓

[34]

C57BL/6J 
mice, male

60% HFD 12 
weeks

Serum glucose ↑ Type 2 diabetes, 
hypertension, 
cardiovascular 
diseases

F/B ratio ↑ _ _ [42]

C57BL/6 
mice, male

HFD (45% 
kcal/fat (39% 
lard+6% 
soybean oil)

16 
weeks

Bone loss ↑ Leaky gut, 
osteoporosis, 
obesity

Lactobacillus ↓, F/B 
ratio ↑

↑ Claudin-1, 
claudin-15, 
ZO-1, JAM-A 
↓

[43]

C57BL/6J 
male mice, 
male

60% HFD 16 
weeks

Insulin resistance, 
blood glucose ↑

Hyperlipidemia Faecalibaculum, F/B 
ratio ↑, 
Parasutterella ↓

↑ ZO-1, 
occludin, 
claudin-1 ↓

[25]

C57BL6/J 
mice, male

HFD (lard 
(20 g % diet)

60 days Insulin resistance, 
hyperinsulinemia ↑

Type 2 diabetes, 
obesity

_ ↑ ZO-1, 
claudins-1, -2, 
-3 ↓

[44]

C57BL/6 
mice

60% HFD 6 weeks Insulin resistance ↑ IBD, leaky gut Firmicutes, 
Actinobacteria ↑

↑ Occludin, 
goblet cell ↓

[29]

SD rats, 
male

60% HFD 8 weeks Insulin resistance, 
TG ↑

NAFLD Lactobacillaceae, 
Lachnospiraceae ↓

↑ Claudin-1 ↓ [45]

C57BL/6 
mice, male

60% HFD 12 
weeks

Insulin resistance, 
metabolic 
endotoxemia ↑

Obesity, 
diabetes

Firmicutes ↑ ↑ Occludin, ZO-
1, Claudin-5↓

[46]

TG, triglycerides; HDL, high-density lipoprotein cholesterol; TC, total cholesterol; LDL, low-density lipoprotein cholesterol; AST,
aspartate aminotransferase; ALT, Alanine aminotransferase; F/B, Firmicutes/Bacteroidetes; ZO-1, zonulin-1; JAM-A, junctional
adhesion molecule; Muc2, mucin 2; Muc3, Mucin 3. 
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Artificial sweeteners, such as saccharin, aspartame, and sucralose, commonly utilized as sugar substitutes in
food and beverages, are popular due to their low-calorie effects. Previous studies have indicated that non-caloric
sweeteners can alter the composition of gut microbiota, potentially leading to disruptions in metabolic health. For
instance, in a mouse study, the administration of aspartame at a dosage of 5–7 mg/kg/day was associated with
increased fasting blood glucose levels and insulin resistance, which can contribute to chronic health conditions
[54]. These changes in gut microbiota involve a reduction in beneficial bacteria, such as Lachnospiraceae and
Ruminococcaceae, along with an increase in harmful bacteria, potentially resulting in microbial community
disruption, IBD, and metabolic disorders, such as type 2 diabetes [55]. In prior research, the consumption of
neotame for 4 weeks led to an increase in Bacteroides and other unspecified genera in male CD-1 mice,
particularly within the Bacteroides phylum. Certain components of the Lachnospira and Luminococcus families in
neotame-treated animals exhibited a notable decrease in Blautia, Dorea, Oscillospira, and Luminococcus compared to
the control group [56]. Furthermore, the six-week administration of sucralose resulted in an increase in Firmicures,
Clostridium symbiosum, and Peptostreptococcus anaerobius [57]. These findings indicate that artificial sweeteners
disrupt the composition and diversity of the gut microbiome. Table 2 presents various HCD-induced dietary
interventions in mouse studies regarding the development of metabolic disorders, alterations in gut microbiota,
changes in intestinal permeability, and modifications in TJ proteins. Nevertheless, a more comprehensive
understanding of the relationship between artificial sweeteners and gut microbiota necessitates further research.

Table 2. Metabolic disorders, alterations in gut microbiota and permeability, and changes in tight junction (TJ)
proteins confirmed through high-carbohydrate diet(HCD)-induced dietary interventions in mouse studies.

Animal Diet 
composition Duration Disorder Disease Microbiota Permeability

TJ protein/
mucin 

production
Reference

C57BL
/6J 
mice, 
female

65% 
fructose

12 
weeks

Endotoxin 
translocation,
intestinal 
barrier 
impairment ↑

- Enterobacteriaceae, 
Coprococcus, 
Ruminococcus↑/ 
Bacteroidetes↓

 ↑ Occludin, 
claudin-2, 
claudin-5 ↓

[48]

C57BL
/6J 
mice, 
male

30% 
fructose

Glucose 
homeostasis, 
insulin 
sensitivity, 
hepatic lipid 
accumulation, 
TG ↑

Hepatic 
steatosis

Desulfovibriovulgaris, 
Proteobacteria↑

 ↑ ZO-1, 
occludin ↓

[50]

C57BL
/6J 
mice

30% 
fructose

8 weeks Insulin 
resistance, 
blood glucose, 
TG ↑

Hepatic 
steatosis

-  ↑ Occludin, 
ZO-1 ↓

[58]

C57BL
/6N 
mice, 
male

30% 
fructose

8 weeks Insulin 
resistance, 
hippocampal 
neuroinflamma
tion, intestinal 
epithelial 
barrier damage 
↑

- Bacteroidetes↓/ 
Proteobacteria, 
Deferribacteraceae, 
Helicobacteraceae↑

 ↑ ZO-1 ↓ [59]

Fischer 
344 
rats, 
female

30% 
fructose

8 weeks Insulin 
resistance, TG ↑

NAFLD, 
NASH, 
fibrosis, leaky 
gut

Bacteroidetes, 
Proteobacteria, 
Escherichia↑/
Lactobacillus, 
Akkermansia↓

 ↑ ZO-1, 
occludin, 
claudin-1, 
claudin-4 ↓

[60]

Fisher 
344 
rats, 
male

20% 
fructose

10 
weeks

Insulin 
resistance, 
hepatic fat ↑

Liver fibrosis, 
hepatocarcino
genesis

-  ↑ ZO-1 ↓ [61]

C57BL
/6 mice, 
male

15% 
fructose

9 weeks Glucose 
homeostasis, 
insulin 
sensitivity, TG ↑

Liver steatosis, 
liver damage

Firmicutes ↑ - Occludin, ZO-
1, claudin-2 ↓

[52]

C57BL
/6J 
mice, 
female

30% 
fructose

16 
weeks

Insulin 
resistance, 
cholesterol ↑

NAFLD -  ↑ ZO-1, 
occludin ↓

[53]

C57BL
/6J 
mice, 
male

10% 
fructose

10 
weeks

Insulin 
resistance, TG, 
TC, LDL-C ↑

Obesity, 
hyperphagia

Proteobacteria, 
Bacteroides↑ / 
Lactobacillus, 
Bifidobacterium↓

- - [51]
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Table 2. Continued.

Animal Diet 
composition Duration Disorder Disease Microbiota Permeability

TJ protein/
mucin 

production
Reference

C57BL
/6 mice, 
male

15% glucose 9 weeks Glucose 
intolerance, 
hyperglycemia 
↑

 Proteobacteria, 
Desulfovibrionaceae, 
Desulfovibrionaceae↑

  [52]

C57BL
/7 mice, 
male

65% glucose 12 
weeks

Glucose 
homeostasis, 
insulin 
sensitivity, TG ↑

Hepatic 
steatosis, 
inflammation

Enterobacteriaceae, 
Coprococcus, 
Ruminococcus↑/ 
Bacteroidetes↓

↑ Occludin, ZO-
1 ↓

[50]

Wild-
type 
mice 
129S1/
SvimJ, 
female

50% sucrose 10 days SCFAs ↓ IBD Verrucomicrobia↑ / 
Lachnospiraceae, 
Prevotellaceae,
Anaeroplasmataceae
↓

↑  [62]

CD-1 
mice, 
male, 
female

Acesulfame
-potassium 
(37.5 mg/
kg/day)

4 weeks Glucose 
intolerance, 
chronic 
inflammation, 
energy 
homeostasis ↑

Type 2 diabetes 
mellitus

Males: ↑ Bacteroides, 
Anaerostipes, 
Sutterella
Females: ↑ in fecal 
Mucispirillum; ↓ 
Lactobacillus, 
Clostridium, an 
unassigned 
Ruminococcaceae 
genus

  [63]

SD rats, 
male

Aspartame 
(5–7 mg/kg/
day)

8 weeks Insulin 
tolerance, 
systemic 
inflammation, 
fasting glucose 
↑

Type 2 diabetes Normal rats: ↑ fecal 
C. leptum
Obese rats: ↑ fecal 
total bacteria, 
Bifidobacterium spp., 
Enterobacteriaceae, 
C. leptum, and 
Roseburia spp

  [54]

C57BL
/7 mice, 
male

Saccharin 
(0.1 mg/kg/
day)

11 
weeks

Glucose 
intolerance ↑

 ↑ fecal abundance 
Bacteroides, 
Clostridiales
↓ fecal L. reuteri, 
members of 
Clostridiales

  [64]

CD-1 
mice, 
male

Neotame 
0.75 mg/kg/
day

4 weeks Cholesterol, 
campesterol, 
stigmastanol ↑

IBD, type 2 
diabetes

Bacteroides and 
undefined genus in 
family S24-7↑,
Lachnospiraceae and 
Ruminococcaceae 
families (e.g., Blautia, 
Dorea, Oscillospira, 
and Ruminococus) ↓

  [56]

C57BL
/6 mice, 
male

Sucralose 
0.0003 mg/
ml

16 
weeks

Blood glucose ↑ IBD, NAFLD, 
IBS

Lachnoclostridium, 
Lachnospiraceae↓/ 
Allobaculum, 
Tenacibaculum, 
Ruegeria, 
Staphylococcus↑

 Muc2 ↓ [55]

C57BL
/6 mice

Sucralose 
1.5 mg/ml

6 weeks Gut damage ↑ IBD Ficmicures, 
Actinomycetes, 
Peptostreptococcus 
stomatis, 
Clostridium, 
symbiosum, 
Peptostreptococcus ↑ / 
proteobacteria ↓

↑ Occludin, 
claudin-1, 
claudin-4 ↓

[57]

TG, triglycerides; TC, total cholesterol; LDL, low-density lipoprotein cholesterol; SCFAs, short-chain fatty acids; NAFLD,
nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; pIBD, inflammatory bowel disease; IBS, inflammatory
bowel syndrome; ZO-1, zonulin-1; Muc2, mucin 2.
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Leaky Gut-Linked Metabolic Diseases
A leaky gut commonly emerges as a consequence of impaired intestinal barrier function in chronic conditions

[65]. It is a classic indicator of intestinal inflammation, and when the intestinal barrier is compromised, toxins can
enter the bloodstream. These toxins can trigger inflammatory responses that may manifest as various diseases. A
leaky gut could either be an underlying factor contributing to a disease or a result of the disease itself, such as in the
case of liver disease. Both normal and imbalanced microbiota can play a role in causing inflammation or other
outcomes that affect the disease [66].

Obesity
Obesity is characterized by a body mass index (BMI) exceeding 30 kg/m2, which arises from the excessive

accumulation of adipose tissues [67]. Obesity is one of the global severe social problems [68]. It is linked to several
risk factors for gastrointestinal diseases, indicating potential impairments in gut health [69]. Recently, there has
been a growing interest in the relationship between gut microbiota composition and obesity. Adipose tissues play
a crucial role in regulating energy balance and lipid metabolism through the secretion of various peptide
hormones, such as adiponectin, leptin, resistin, and tumor necrosis factor-α (TNF-α)[70]. Many disorders,
including but not limited to type 2 diabetes, non-alcoholic steatohepatitis (NASH), dyslipidemia, and various
other illnesses, are caused by obesity. As microorganisms can obtain energy from indigestible dietary
components, the gut microbiota plays a crucial role in the development of obesity [71]. Gut microbiota is
recognized as a source of increased plasma endotoxins associated with obesity and insulin resistance through
elevated intestinal permeability in animal models [72], primarily including LPSs with a high affinity for
lipoproteins [73]. Both in humans and animal models, obesity is associated with factors such as reduced bowel
motility [74], nutritional deficiencies [75, 76], bacterial overgrowth [77], and changes in microbiota composition
leading to the increased production of short-chain fatty acids (SCFAs) [78, 79], compromised barrier function
with heightened bacterial translocation [80], and the development of gastrointestinal conditions, such as
gastroesophageal reflux disease [81] and gallstone formation [82]. Moreover, obesity has been shown to affect
inhibitory and excitatory enteric neurons [83]. These various factors collectively contribute to a potential
deterioration in gut barrier function.

Nonalcoholic Fatty Liver Disease (NAFLD)
 Internationally, NAFLD is the most prevalent chronic liver disease [84]. The mechanisms underlying its

development and progression are influenced by genetic factors and metabolic dysregulation, including type 2
diabetes and insulin resistance, and are closely related to high energy intake [85]. A Western-style diet, which is
rich in cholesterol, can lead to the development of fatty liver through exposure to inflammatory cytokines, insulin
resistance, and oxidative stress [86]. The accumulation of TGs and fats in the liver leads to the development of
NAFLD, which can advance from simple steatosis to NASH, cirrhosis, and hepatocellular cancer [87].

NAFLD can be caused by weight gain, obesity, and lack of physical activity [88]. The hepatic portal vein is
anatomically and physiologically connected to the intestine [89]. Recently, there has been a growing focus on the
dysfunction of the gut-liver axis, which encompasses dysbiosis, bacterial overgrowth, and alterations in intestinal
permeability, all of which are linked to the advancement of NAFLD [90]. For example, alterations in both the
quantity and composition of bacteria disrupt the intestinal barrier, enabling bacterial translocation and
subsequently triggering an inflammatory reaction [91]. The gut-liver axis refers to the symbiotic link between the
gut, its microbiota, and the liver. This connection develops as a result of interactions between signals produced by
nutritional, genetic, and environmental factors [92]. When the function of this axis is compromised, it leads to the
translocation of bacteria and microbial components, along with metabolic by-products, to the liver due to the
imbalance in gut microbiota composition and changes in mucosal permeability [27]. The changes in the gut
microbiota linked to NAFLD are closely related to the clinical stage of the disease [93].

In a previous study, a cohort of 16 individuals diagnosed with NASH and a control group of 22 healthy
individuals provided fecal samples for analysis [94]. The results of the investigation revealed a significant
reduction in the prevalence of Faecalibacterium and Anaerosporobacter in the fecal samples of individuals with
NASH. Conversely, there was an elevated abundance of Parabacteroides and Allisonella in the same group of
individuals. Recent studies have shown that the proportion of Akkermansia muciniphila, a member of the
Verrucomicrobia phylum, is reduced in individuals with obesity and diabetes, as well as in corresponding mouse
models. Additionally, it has been found that the presence of A. muciniphila, regardless of its viability, is linked to
improvements in the integrity of the intestinal mucosal barrier, an increase in goblet cells, and enhanced
metabolic functions [95]. The gut-liver axis plays a pivotal role in the development of NAFLD, primarily by
mediating communication between the intestinal microbiota and the host's immune system, which regulates
inflammation, insulin resistance, and intestinal permeability. Still, comprehensive randomized trials utilizing
antibiotics, probiotics, and prebiotics, along with imaging and histological assessments, are imperative [96].

Brain Dysfunction
The interaction between the brain and the gastrointestinal tract has been widely acknowledged in scientific

literature, as it involves various physiological systems, such as the autonomic neural network, the enteric neural
network, the neuroendocrine neural network, and the immune network [97]. In recent studies, researchers have
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discovered a new link between the gut and the liver, which is influenced by the autonomic nervous system and is
triggered by the gut microbiota [98]. The intestinal microbiota is a crucial component of the gut-brain
neuroendocrine metabolic axis, and the use of antibiotics can disrupt its stability, potentially leading to
inflammation [99]. Inflammation is a key factor related to the blood-brain barrier (BBB) in the brain. To
understand the relationship between gut and brain leakiness, it is essential to comprehend the neurovascular
barrier under normal physiological conditions, which plays a role in limiting BBB permeability and preventing
the entry of substances like bacteria into the brain. However, inflammation and physiological stressors disrupt the
BBB, impairing its selective substance passage. A leaky gut may be one of the fundamental causes associated with
the breakdown of the BBB, and conditions like hypoxia and inflammation are known to increase the intercellular
permeability of the BBB [100].

There are various pathways through which the gut microbiome and the brain communicate, and these pathways
can be affected by changes in the levels of certain substances such as SCFAs, tryptophan (which is a precursor of
dopamine and serotonin), gamma-aminobutyric acid, and other amino acids [101]. The metabolic by-products of
the gut microbiota have garnered significant attention, especially SCFAs, which are produced by anaerobic
microbes in the caecum, such as Enterococcus. These SCFAs are generated through the fermentation of dietary
fiber, which consists of non-digestible carbohydrates. The presence of SCFAs, as well as the levels of colonic
Enterococcus, have been linked to various beneficial effects on the host, including the suppression of appetite
[102]. Additionally, SCFAs can traverse the intestinal barrier, enter the systemic circulation, cross the BBB, and
reach the brain parenchyma [103]. This allows them to directly influence the hypothalamic regulation of
metabolism and appetite [104]. The production of SCFAs by the gut microbiota has been found to have an impact
on the maintenance of the BBB by promoting the synthesis of TJ proteins [105]. This enhanced integrity of the
BBB serves to restrict the passage of unwanted metabolites into the brain tissues [106]. The lipoproteins and LPSs
produced by the harmful gut microbiota can impact autoimmune function by inducing the release of cytokines
from immune cells. These cytokines can traverse the BBB and activate neurons, leading to modifications in
neurological functions and consequently affecting mood and behavior [107]. The gastrointestinal system can
indeed impact the BBB by releasing gastrointestinal-derived hormones, facilitating the passage of certain drugs,
amino acids, and small molecules across the barrier. This interaction can also affect cytokine production, a crucial
aspect of innate immune system activation [108]. While various studies have provided evidence of the potential
involvement of leaky gut in the onset of diseases, further exploration is needed to elucidate the precise
physiological effects and mechanisms.

Conclusion 
This literature review presents current research findings on the relationship between obesity and metabolic

disorders caused by HFD and HCD, as well as disruptions in the gut microbiota. Additionally, we discussed the
effects of these factors on intestinal microorganisms and the communication pathways between the gut, liver, and
brain. Consuming a diet rich in fats and carbohydrates can weaken the adherence of TJ proteins in the
gastrointestinal tract. Consequently, this allows endotoxins, such as LPSs produced by detrimental bacteria, to
permeate through portal veins. This process can result in metabolic endotoxemia, which disrupts the composition
of the gut microbiome and diminishes the production of metabolites like SCFAs. However, the precise correlation
between gut microbiota and alternative sweeteners remains uncertain, thus necessitating additional investigation
in this domain. The investigation of the impact of diet on gut microbiota and the underlying mechanisms of the
gut-liver and gut-brain axis is of significant importance. However, the limited amount of research conducted on
the gut-liver axis poses challenges in fully understanding the intricate connection between diet and the gut-brain
axis. Hence, there is a pressing need for comprehensive research endeavors aimed at elucidating the intricate gut-
brain mechanisms that underlie intestinal health and microbiota.
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