• Title/Summary/Keyword: Gut metabolites

Search Result 70, Processing Time 0.019 seconds

Gut microbiome-produced metabolites in pigs: a review on their biological functions and the influence of probiotics

  • Robie, Vasquez;Ju Kyoung, Oh;Ji Hoon, Song;Dae-Kyung, Kang
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.671-695
    • /
    • 2022
  • The gastrointestinal tract is a complex ecosystem that contains a large number of microorganisms with different metabolic capacities. Modulation of the gut microbiome can improve the growth and promote health in pigs. Crosstalk between the host, diet, and the gut microbiome can influence the health of the host, potentially through the production of several metabolites with various functions. Short-chain and branched-chain fatty acids, secondary bile acids, polyamines, indoles, and phenolic compounds are metabolites produced by the gut microbiome. The gut microbiome can also produce neurotransmitters (such as γ-aminobutyric acid, catecholamines, and serotonin), their precursors, and vitamins. Several studies in pigs have demonstrated the importance of the gut microbiome and its metabolites in improving growth performance and feed efficiency, alleviating stress, and providing protection from pathogens. The use of probiotics is one of the strategies employed to target the gut microbiome of pigs. Promising results have been published on the use of probiotics in optimizing pig production. This review focuses on the role of gut microbiome-derived metabolites in the performance of pigs and the effects of probiotics on altering the levels of these metabolites.

Current Trends and Future Directions of Gut Microbiota and Their-Derived Metabolite Study in the Pediatric Perspective of Korean Medicine (소아과학 관점에서 바라본 장내 미생물 연구 동향과 향후 방향)

  • Ryu, Dongryeol;Kim, Kibong
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.33 no.1
    • /
    • pp.34-45
    • /
    • 2019
  • Objectives The purpose of this study is to highlight recent gut-microbiota studies and to encourage gut-microbiota-related researches in Pediatric science of Korean Medicine. Methods We searched gut microbiota related studies and patents via the PubMed database of the US National Institutes of Health (NIH) and the PatentScope database of the UN World Intellectual Property Organization (WIPO) to see current trends of gut microbiota studies. Results All searched research and review articles in gut-microbiota studies were analyzed and presented as two charts, showing the recent trends of gut microbiota research. We summarized and discussed the significance of the selected fifty-six articles. Also, we listed reported gut-microbiota-derived small metabolites, impacting on human health and diseases. Conclusions This study emphasizes the critical roles of gut-microbiota and their-derived small metabolites in the human physiology and pathology. We know and agree that many natural compounds in Korean Medicine could be converted into small metabolites by gut microbiota in our body. Thus, it is important to encourage physicians and researchers of gut microbiota in the arena of Pediatric Korean Medicine. We believe that researchers will find a lot of unknown metabolites produced by gut microbiota from natural compounds in Korean Medicine.

Gut Microbial Metabolites on Host Immune Responses in Health and Disease

  • Jong-Hwi Yoon;Jun-Soo Do;Priyanka Velankanni;Choong-Gu Lee;Ho-Keun Kwon
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.6.1-6.24
    • /
    • 2023
  • Intestinal microorganisms interact with various immune cells and are involved in gut homeostasis and immune regulation. Although many studies have discussed the roles of the microorganisms themselves, interest in the effector function of their metabolites is increasing. The metabolic processes of these molecules provide important clues to the existence and function of gut microbes. The interrelationship between metabolites and T lymphocytes in particular plays a significant role in adaptive immune functions. Our current review focuses on 3 groups of metabolites: short-chain fatty acids, bile acids metabolites, and polyamines. We collated the findings of several studies on the transformation and production of these metabolites by gut microbes and explained their immunological roles. Specifically, we summarized the reports on changes in mucosal immune homeostasis represented by the Tregs and Th17 cells balance. The relationship between specific metabolites and diseases was also analyzed through latest studies. Thus, this review highlights microbial metabolites as the hidden treasure having potential diagnostic markers and therapeutic targets through a comprehensive understanding of the gut-immune interaction.

Gut Microbiota Metabolite Messengers in Brain Function and Pathology at a View of Cell Type-Based Receptor and Enzyme Reaction

  • Bada Lee;Soo Min Lee;Jae Won Song;Jin Woo Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.4
    • /
    • pp.403-423
    • /
    • 2024
  • The human gastrointestinal (GI) tract houses a diverse microbial community, known as the gut microbiome comprising bacteria, viruses, fungi, and protozoa. The gut microbiome plays a crucial role in maintaining the body's equilibrium and has recently been discovered to influence the functioning of the central nervous system (CNS). The communication between the nervous system and the GI tract occurs through a two-way network called the gut-brain axis. The nervous system and the GI tract can modulate each other through activated neuronal cells, the immune system, and metabolites produced by the gut microbiome. Extensive research both in preclinical and clinical realms, has highlighted the complex relationship between the gut and diseases associated with the CNS, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. This review aims to delineate receptor and target enzymes linked with gut microbiota metabolites and explore their specific roles within the brain, particularly their impact on CNS-related diseases.

The Inhibitory Effect of Gut Microbiota and Its Metabolites on Colorectal Cancer

  • Chen, Chao;Li, Huajun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1607-1613
    • /
    • 2020
  • Colorectal cancer (CRC) is regarded as one of the most common and deadly forms of cancer. Gut microbiota is vital to retain and promote several functions of intestinal. Although previous researches have shown that some gut microbiota have the abilities to inhibit tumorigenesis and prevent cancer from progressing, they have not yet clearly identified associative mechanisms. This review not only concentrates on the antitumor effects of metabolites produced by gut microbiota, for example, SCFA, ferrichrome, urolithins, equol and conjugated linoleic acids, but also the molecules which constituted the bacterial cell wall have the antitumor effect in the host, including lipopolysaccharide, lipoteichoic acid, β-glucans and peptidoglycan. The aim of our review is to develop a possible therapeutic method, which use the products of gut microbiota metabolism or gut microbiota constituents to help treat or prevent colorectal cancer.

Korean Red Ginseng and Rb1 restore altered social interaction, gene expressions in the medial prefrontal cortex, and gut metabolites under post-weaning social isolation in mice

  • Oh Wook Kwon;Youngja Hwang Park;Dalnim Kim;Hyog Young Kwon;Hyun-Jeong Yang
    • Journal of Ginseng Research
    • /
    • v.48 no.5
    • /
    • pp.481-493
    • /
    • 2024
  • Background: Post-weaning social isolation (SI) reduces sociability, gene expressions including myelin genes in the medial prefrontal cortex (mPFC), and alters microbiome compositions in rodent models. Korean Red Ginseng (KRG) and its major ginsenoside Rb1 have been reported to affect myelin formation and gut metabolites. However, their effects under post-weaning SI have not been investigated. This study investigated the effects of KRG and Rb1 on sociability, gene expressions in the mPFC, and gut metabolites under post-weaning SI. Methods: C57BL/6J mice were administered with water or KRG (150, 400 mg/kg) or Rb1 (0.1 mg/kg) under SI or regular environment (RE) for 2 weeks during the post-weaning period (P21-P35). After this period, mice underwent a sociability test, and then brains and ceca were collected for qPCR/immunohistochemistry and nontargeted metabolomics, respectively. Results: SI reduced sociability compared to RE; however, KRG (400 mg/kg) and Rb1 significantly restored sociability under SI. In the mPFC, expressions of genes related to myelin, neurotransmitter, and oxidative stress were significantly reduced in mice under SI compared to RE conditions. Under SI, KRG and Rb1 recovered the altered expressions of several genes in the mPFC. In gut metabolomics, 313 metabolites were identified as significant among 3027 detected metabolites. Among the significantly changed metabolites in SI, some were recovered by KRG or Rb1, including metabolites related to stress axis, inflammation, and DNA damage. Conclusion: Altered sociability, gene expression levels in the mPFC, and gut metabolites induced by two weeks of post-weaning SI were at least partially recovered by KRG and Rb1.

Diet-Induced Gut Dysbiosis and Leaky Gut Syndrome

  • Yu-Rim Chae;Yu Ra Lee;Young-Soo Kim;Ho-Young Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.747-756
    • /
    • 2024
  • Chronic gut inflammation promotes the development of metabolic diseases such as obesity. There is growing evidence which suggests that dysbiosis in gut microbiota and metabolites disrupt the integrity of the intestinal barrier and significantly impact the level of inflammation in various tissues, including the liver and adipose tissues. Moreover, dietary sources are connected to the development of leaky gut syndrome through their interaction with the gut microbiota. This review examines the effects of these factors on intestinal microorganisms and the communication pathways between the gut-liver and gut-brain axis. The consumption of diets rich in fats and carbohydrates has been found to weaken the adherence of tight junction proteins in the gastrointestinal tract. Consequently, this allows endotoxins, such as lipopolysaccharides produced by detrimental bacteria, to permeate through portal veins, leading to metabolic endotoxemia and alterations in the gut microbiome composition with reduced production of metabolites, such as short-chain fatty acids. However, the precise correlation between gut microbiota and alternative sweeteners remains uncertain, necessitating further investigation. This study highlights the significance of exploring the impact of diet on gut microbiota and the underlying mechanisms in the gut-liver and gut-brain axis. Nevertheless, limited research on the gut-liver axis poses challenges in comprehending the intricate connections between diet and the gut-brain axis. This underscores the need for comprehensive studies to elucidate the intricate gut-brain mechanisms underlying intestinal health and microbiota.

Interplay between the Gut Microbiome and Metabolism in Ulcerative Colitis Mice Treated with the Dietary Ingredient Phloretin

  • Ren, Jie;Li, Puze;Yan, Dong;Li, Min;Qi, Jinsong;Wang, Mingyong;Zhong, Genshen;Wu, Minna
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1409-1419
    • /
    • 2021
  • A growing number of healthy dietary ingredients in fruits and vegetables have been shown to exhibit diverse biological activities. Phloretin, a dihydrochalcone flavonoid that is abundant in apples and pears, has anti-inflammatory effects on ulcerative colitis (UC) mice. The gut microbiota and metabolism are closely related to each other due to the existence of the food-gut axis in the human colon. To investigate the interplay of faecal metabolites and the microbiota in UC mice after phloretin treatment, phloretin (60 mg/kg) was administered by gavage to ameliorate dextran sulfate sodium (DSS)-induced UC in mice. Gut microbes and faecal metabolite profiles were detected by high-throughput sequencing and liquid chromatography mass spectrometry (LC-MS) analysis, respectively. The correlations between gut microbes and their metabolites were evaluated by Spearman correlation coefficients. The results indicated that phloretin reshaped the disturbed faecal metabolite profile in UC mice and improved the metabolic pathways by balancing the composition of faecal metabolites such as norepinephrine, mesalazine, tyrosine, 5-acetyl-2,4-dimethyloxazole, and 6-acetyl-2,3-dihydro-2-(hydroxymethyl)-4(1H)-pyridinone. Correlation analysis identified the relations between the gut microbes and their metabolites. Proteus was negatively related to many faecal metabolites, such as norepinephrine, L-tyrosine, laccarin, dopamine glucuronide, and 5-acetyl-2,4-dimethyloxazole. The abundance of unidentified Bacteriodales_S24-7_group was positively related to ecgonine, 15-KETE and 6-acetyl-2,3-dihydro-2-(hydroxymethyl)-4(1H)-pyridinone. The abundance of Christensenellaceae_R-7_group was negatively related to the levels of 15-KETE and netilmicin. Stenotrophomonas and 15-KETE were negatively related, while Intestinimonas and alanyl-serine were positively related. In conclusion, phloretin treatment had positive impacts on faecal metabolites in UC mice, and the changes in faecal metabolites were closely related to the gut microbiota.

Gut microbiota-mediated pharmacokinetics of ginseng saponins

  • Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.255-263
    • /
    • 2018
  • Orally administered ginsengs come in contact with the gut microbiota, and their hydrophilic constituents, such as ginsenosides, are metabolized to hydrophobic compounds by gastric juice and gut microbiota: protopanxadiol-type ginsenosides are mainly transformed into compound K and ginsenoside Rh2; protopanaxatriol-type ginsenosides to ginsenoside Rh1 and protopanaxatriol, and ocotillol-type ginsenosides to ocotillol. Although this metabolizing activity varies between individuals, the metabolism of ginsenosides to compound K by gut microbiota in individuals treated with ginseng is proportional to the area under the blood concentration curve for compound K in their blood samples. These metabolites such as compound K exhibit potent pharmacological effects, such as antitumor, anti-inflammatory, antidiabetic, antiallergic, and neuroprotective effects compared with the parent ginsenosides, such as Rb1, Rb2, and Re. Therefore, to monitor the potent pharmacological effects of ginseng, a novel probiotic fermentation technology has been developed to produce absorbable and bioactive metabolites. Based on these findings, it is concluded that gut microbiota play an important role in the pharmacological action of orally administered ginseng, and probiotics that can replace gut microbiota can be used in the development of beneficial and bioactive ginsengs.

Gut microbiota-generated metabolites: missing puzzles to hosts' health, diseases, and aging

  • Yan Zhang;Shibo Wei;Hang Zhang;Yunju Jo;Jong-Sun Kang;Ki-Tae Ha;Jongkil Joo;Hyun Joo Lee;Dongryeol Ryu
    • BMB Reports
    • /
    • v.57 no.5
    • /
    • pp.207-215
    • /
    • 2024
  • The gut microbiota, an intricate community of bacteria residing in the gastrointestinal system, assumes a pivotal role in various physiological processes. Beyond its function in food breakdown and nutrient absorption, gut microbiota exerts a profound influence on immune and metabolic modulation by producing diverse gut microbiota-generated metabolites (GMGMs). These small molecules hold potential to impact host health via multiple pathways, which exhibit remarkable diversity, and have gained increasing attention in recent studies. Here, we elucidate the intricate implications and significant impacts of four specific metabolites, Urolithin A (UA), equol, Trimethylamine N-oxide (TMAO), and imidazole propionate, in shaping human health. Meanwhile, we also look into the advanced research on GMGMs, which demonstrate promising curative effects and hold great potential for further clinical therapies. Notably, the emergence of positive outcomes from clinical trials involving GMGMs, typified by UA, emphasizes their promising prospects in the pursuit of improved health and longevity. Collectively, the multifaceted impacts of GMGMs present intriguing avenues for future research and therapeutic interventions.