• 제목/요약/키워드: Gut development

검색결과 235건 처리시간 0.025초

Alteration of the gut microbiota in post-weaned calves following recovery from bovine coronavirus-mediated diarrhea

  • Kwon, Min-Sung;Jo, Hee Eun;Lee, Jieun;Choi, Kyoung-Seong;Yu, Dohyeon;Oh, Yeon-su;Park, Jinho;Choi, Hak-Jong
    • Journal of Animal Science and Technology
    • /
    • 제63권1호
    • /
    • pp.125-136
    • /
    • 2021
  • Bovine coronavirus (BCoV) is associated with severe diarrhea, dehydration, and depression, which result in significant economic damages in the dairy and beef cattle industries worldwide. However, differences in the gut microbiota structure and their correlations with differing physiological parameters between BCoV-infected calves with diarrhea and recovered calves are not well understood. In this study, fecal specimens were collected from 10 post-weaned calves, before and after 2 months of fluid therapy, and the samples were used for microbiota analysis. Following recovery, the alpha-diversity profiles (observed operational taxonomic units [OTUs], and Chao1, Shannon, and Simpson indices) changed significantly when compared with those of calves with diarrhea. Beta-diversity analysis exhibited significant differences in gut microbiota compositions between calves with diarrhea and those in the recovered state. The abundances of eight phyla and thirteen genera in feces changed markedly after restoration of BCoV diarrhea. In addition, our correlation study clearly revealed that increased abundances of the genera Caproiciproducens, Pseudoflavonifractor, and Oscillibacter negatively correlated with serum glucose, and phosphorus levels, but positively correlated with serum chloride in calves with diarrhea, whereas increased abundances of the genera Peptostreptococcaceae;Clostridium (Clostridium cluster XI), Intestinibacter, Cellulosilyticum, Ruminococcus, Romboutsia, Paeniclostridium, Clostridiaceae;Clostridium and Turicibacter in recovered calves showed the opposite pattern. These results suggest that structural changes of the gut microbiota after recovery from BCoV infection correlate with changes in physiological parameters. In conclusion, our data provide evidence of gut microbiota-composition changes and their correlations with the physical profiles of post-weaned calves, before and after fluid therapy for BCoV-related diarrhea.

궤양성 대장염에서 식이 인자와 장 마이크로비오타의 상호작용 (Interaction between Dietary Factors and Gut Microbiota in Ulcerative Colitis)

  • 성미경
    • Journal of Digestive Cancer Research
    • /
    • 제10권1호
    • /
    • pp.31-38
    • /
    • 2022
  • Ulcerative colitis (UC) exhibits chronic intestinal inflammatory conditions with cycles of relapse and remission. The incidence is rapidly growing in Asian countries including South Korea possibly due to changes in lifestyles. Although the etiology of inflammatory bowel disease is inconclusive, gut microbiota composition is considered a critical factor involved in the pathogenesis of UC. The overgrowth of pathogenic bacteria evokes hyper-immune responses in gut epithelium causing tissue inflammation and damage. Also, failure to regulate gut epithelium integrity due to chronic inflammation and mucus depletion accelerates bacterial translocation aggravating immune dysregulation. Gut microbiota composition responds to the diet in a very rapid manner. Epidemiological studies have indicated that the risk of UC is associated with low plant foods/high animal foods consumption. Several bacterial strains consistently found depleted in UC patients use plant food-originated dietary fiber producing short chain fatty acids to maintain epithelial integrity. These bacteria also use mucus layer mucin to keep gut microbiota diversity. These studies partly explain the association between dietary modification of gut microbiota in UC development. Further human intervention trials are required to allow the use of specific bacterial strains in the management of UC.

Effect of Consumption of Animal Products on the Gut Microbiome Composition and Gut Health

  • Chaewon Lee;Junbeom Lee;Ju Young Eor;Min-Jin Kwak;Chul Sung Huh;Younghoon Kim
    • 한국축산식품학회지
    • /
    • 제43권5호
    • /
    • pp.723-750
    • /
    • 2023
  • The gut microbiome is critical in human health, and various dietary factors influence its composition and function. Among these factors, animal products, such as meat, dairy, and eggs, represent crucial sources of essential nutrients for the gut microbiome. However, the correlation and characteristics of livestock consumption with the gut microbiome remain poorly understood. This review aimed to delineate the distinct effects of meat, dairy, and egg products on gut microbiome composition and function. Based on the previous reports, the impact of red meat, white meat, and processed meat consumption on the gut microbiome differs from that of milk, yogurt, cheese, or egg products. In particular, we have focused on animal-originated proteins, a significant nutrient in each livestock product, and revealed that the major proteins in each food elicit diverse effects on the gut microbiome. Collectively, this review highlights the need for further insights into the interactions and mechanisms underlying the impact of animal products on the gut microbiome. A deeper understanding of these interactions would be beneficial in elucidating the development of dietary interventions to prevent and treat diseases linked to the gut microbiome.

Quantitative Comparison of Diversity and Conformity in Nitrogen Recycling of Ruminants

  • Obitsu, T.;Taniguchi, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권3호
    • /
    • pp.440-447
    • /
    • 2009
  • Domestic ruminant animals are reared in diverse production systems, ranging from extensive systems under semi-arid and tropical conditions with poor feed resources to intensive systems in temperate and cold areas with high quality feed. Nitrogen (N) recycling between the body and gut of ruminants plays a key role in the adaptation to such diverse nutritional conditions. Ammonia and microbial protein produced in the gut and urea synthesized in the liver are major players in N-recycling transactions. In this review, we focus on the physiological factors affecting urea production and recycling. Sheep and buffalo probably have higher abilities to reabsorb urea from the kidney compared with cattle. This affects the degree of urea-N recycling between the body and gut at both low and high N intakes. The synthesis and gut entry of urea also differs between cattle bred for either dairy or beef production. Lactating dairy cows show a higher gut entry of urea compared with growing cattle. The synthesis and recycling of urea dramatically increases after weaning, so that the functional development of the rumen exerts an essential role in N transactions. Furthermore, high ambient temperature increases urea production but reduces urea gut entry. An increase in total urea flux, caused by the return to the ornithine cycle from the gut entry, is considered to serve as a labile N pool in the whole body to permit metabolic plasticity under a variety of physiological, environmental and nutritional conditions.

Immune Disorders and Its Correlation with Gut Microbiome

  • Hwang, Ji-Sun;Im, Chang-Rok;Im, Sin-Hyeog
    • IMMUNE NETWORK
    • /
    • 제12권4호
    • /
    • pp.129-138
    • /
    • 2012
  • Allergic disorders such as atopic dermatitis and asthma are common hyper-immune disorders in industrialized countries. Along with genetic association, environmental factors and gut microbiota have been suggested as major triggering factors for the development of atopic dermatitis. Numerous studies support the association of hygiene hypothesis in allergic immune disorders that a lack of early childhood exposure to diverse microorganism increases susceptibility to allergic diseases. Among the symbiotic microorganisms (e.g. gut flora or probiotics), probiotics confer health benefits through multiple action mechanisms including modification of immune response in gut associated lymphoid tissue (GALT). Although many human clinical trials and mouse studies demonstrated the beneficial effects of probiotics in diverse immune disorders, this effect is strain specific and needs to apply specific probiotics for specific allergic diseases. Herein, we briefly review the diverse functions and regulation mechanisms of probiotics in diverse disorders.

Fecal microbiome shifts by different forms of copper supplementations in growing pigs

  • Kim, Minji;Cho, Jae Hyoung;Seong, Pil-Nam;Jung, Hyunjung;Jeong, Jin Young;Kim, Sheena;Kim, Hyeri;Kim, Eun Sol;Keum, Gi Beom;Guevarra, Robin B.;Kim, Hyeun Bum
    • Journal of Animal Science and Technology
    • /
    • 제63권6호
    • /
    • pp.1386-1396
    • /
    • 2021
  • Copper is an essential mineral for pigs, thus it is used as a feed additive in the forms of copper sulfate. Therefore, this study aimed at characterizing the fecal microbiota shifts in pigs as fed by different forms of copper supplementation. 40 growing pigs aged 73 ± 1 days with an average weight of 30.22 ± 1.92kg were randomly divided into 5 groups. The control group (CON) fed with basal diet, while treatment groups were fed a basal diet supplemented with 100 ppm/kg of copper sulfate (CuSO4), Cu-glycine complex (CuGly), Cu-amino acid complex (CuAA), and Cu-hydroxy(4methylthio)butanoate chelate complex (CuHMB) for 28 days of trial, respectively. The data presented the comparison between inorganic and organic copper supplementation through gut microbiota in growing pigs. Alpha and Beta diversity anaylsis resulted in copper supplementation did shifted gut microbioal community structure. At the phylum level, Firmicutes and Bacteroidetes were the most abundant phyla at all times regardless of treatment. At the genus level, the relative abundances of Prevotella, Lactobacillus, Megasphaera, and SMB53 of the CuGly and CuHMB groups were significantly higher than those of copper sulfate and basal diet groups. Overall, this study may provide the potential role of organic copper replacing inorganic copper, resulting in increased beneficial bacteria in the pig gut.

Leaky Gut in IBD: Intestinal Barrier-Gut Microbiota Interaction

  • Yu, Shunying;Sun, Yibin;Shao, Xinyu;Zhou, Yuqing;Yu, Yang;Kuai, Xiaoyi;Zhou, Chunli
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권7호
    • /
    • pp.825-834
    • /
    • 2022
  • Inflammatory bowel disease (IBD) is a global disease that is in increasing incidence. The gut, which contains the largest amount of lymphoid tissue in the human body, as well as a wide range of nervous system components, is integral in ensuring intestinal homeostasis and function. By interacting with gut microbiota, immune cells, and the enteric nervous system, the intestinal barrier, which is a solid barrier, protects the intestinal tract from the external environment, thereby maintaining homeostasis throughout the body. Destruction of the intestinal barrier is referred to as developing a "leaky gut," which causes a series of changes relating to the occurrence of IBD. Changes in the interactions between the intestinal barrier and gut microbiota are particularly crucial in the development of IBD. Exploring the leaky gut and its interaction with the gut microbiota, immune cells, and the neuroimmune system may help further explain the pathogenesis of IBD and provide potential therapeutic methods for future use.

한약의 장내미생물 조절 효과에 대한 국내외 실험 연구 고찰 (A Review of the Experimental Studies on the Modulatory Effect Herbal Medicine on Gut Microbiota)

  • 안혜리;송지현;이혜림
    • 대한한방소아과학회지
    • /
    • 제34권4호
    • /
    • pp.43-58
    • /
    • 2020
  • Objectives The purpose of this study is to analyze the effect of various herbal medicin on gut microbiota. Methods Electronic searches were performed using NDSL, OASIS, KISS, KMBASE, K-portal, Pub med, Cochrane, CNKI. Results we analyzed 25 experimental studies on the effect of herbal medicine on microbiota. Diabetes, obesity, inflammatory bowel disease have been frequently studied in micobiota-related disease. The most common experimental animal model used in the studies C57BL/7 mouse. Among the studies wherein single herbal medication were used, Gynostemma pentaphyllum was most commonly studies, and different herbal medications were used in the studies wherein complex herbal medications were studied. Next generation sequencing was performed using Illumina MiSeq system, and gut microbiota analysis was performed using QIIME and Ribosomal Database Project (RDP). In most studies, the herbal medicines exerted regulatory effects on gut microbiota and improved the symptoms of the experimental groups. Conclusions This review provides basic data on the correlation between korean medicine and gut microbiota, as well as information for the development of korean medicine.

Expression of Cell Proliferation-Related PCNA and E2F Genes in Drosophila Gut and Inhibitory Effect of Nitric Oxide

  • Choi, Na-Hyun;Kim, Young-Shin;Hwang, Mi-Sun;Nam, Hyuck-Jin;Kim, Nam-Deuk;Chung, Hae-Young;Yoo, Mi-Ae
    • Animal cells and systems
    • /
    • 제5권1호
    • /
    • pp.59-64
    • /
    • 2001
  • To understand the late gut development and differentiation, identification and characterization of target genes of homeotic genes involved in gut development are required. We have previously reported that homeodomain proteins can regulate expression of the cell proliferation-related genes. We investigated here the expression of the Drosophila proliferating cell nuclear antigen(PCNA) and E2F(dE2F) genes in larval and adult guts using transgenic flies bearing lacz reporter genes. Both PCNA and dE2F genes were expressed strongly in whole regions of the larval and adult guts including the esophagus, proventriculus, midgut and hindgut, showing higher expression in foregut and hindgut imaginal rings of larva. Nitric Oxide(NO) has been known to be involved in cell proliferation and tumor growth and also to have an antiproliferative activity. Therefore, we also investigated effects of NO on the expression of PCNA and dE2F genes in gut through analyses of lacz reporter expression level in the SNP (NO donor)-treated larval guts. Expressions of both PCNA and dE2F were greatly declined by SNP. The inhibitory effect of NO was shown in whole regions of the gut, especially in hindgut, while the internal region of proventriculus, esophagus, foregut imaginal ring and hindgut imaginal ring was resistant. Our results suggest that this inhibitory effect may be related with the antiproliferative activity of NO.

  • PDF

Gut Microbiome Alterations and Functional Prediction in Chronic Spontaneous Urticaria Patients

  • Zhang, Xinyue;Zhang, Jun;Chu, Zhaowei;Shi, Linjing;Geng, Songmei;Guo, Kun
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권5호
    • /
    • pp.747-755
    • /
    • 2021
  • The effects of the gut microbiome on both allergy and autoimmunity in dermatological diseases have been indicated in several recent studies. Chronic spontaneous urticaria (CSU) is a disease involving allergy and autoimmunity, and there is no report detailing the role of microbiota alterations in its development. This study was performed to identify the fecal microbial composition of CSU patients and investigate the different compositions and potential genetic functions on the fecal microbiota between CSU patients and normal controls. The gut microbiota of CSU patients and healthy individuals were obtained by 16s rRNA massive sequencing. Gut microbiota diversity and composition were compared, and bioinformatics analysis of the differences was performed. The gut microbiota composition results showed that Firmicutes, Bacteroidetes, Proteobacteria, and Verrucomicrobia were dominant microbiota in CSU patients. The differential analysis showed that relative abundance of the Proteobacteria (p = 0.03), Bacilli (p = 0.04), Enterobacterales (p = 0.03), Enterobacteriaceae (p = 0.03) was significantly increased in CSU patients. In contrast, the relative abundance of Megamonas, Megasphaera, and Dialister (all p < 0.05) in these patients significantly decreased compared with healthy controls. The different microbiological compositions impacted normal gastrointestinal functions based on function prediction, resulting in abnormal pathways, including transport and metabolism. We found CSU patients exhibited gut microbiota dysbiosis compared with healthy controls. Our results indicated CSU is associated with gut microbiota dysbiosis and pointed out that the bacterial taxa increased in CSU patients, which might be involved in the pathogenesis of CSU. These results provided clues for future microbial-based therapies on CSU.