• 제목/요약/키워드: Gut Microbiota

검색결과 323건 처리시간 0.024초

문헌 고찰을 통한 비만 치료 한약의 장내미생물 변화 연구 (A Study on Changes in the Gut Microbiome of Herbal Medicines for Treating Obesity Using Literature Review)

  • 김승원;천진홍;김기봉
    • 대한한방소아과학회지
    • /
    • 제36권2호
    • /
    • pp.40-51
    • /
    • 2022
  • Objective This study identified useful herbal medicines and prescriptions for obesity treatment by analyzing herbal medicines and prescriptions that showed meaningful results in weight loss by changing the gut microbiota. Methods Using PubMed, we selected and studied 23 papers showing meaningful results on weight loss through changes in the gut microbiota using herbal medicines. Result Of the 23 selected papers, 17 were of studies using herbal medicines, and 6 of studies using prescriptions. Pomegranate peel, Flos Lonicera, Rehmannia glutinosa, Rhein, Coix seed, Platycodon grandiflorus, mulberry leaves, Poria cocos, asperuloside, Bupleuri radix, Astragalus polysaccharides, Ephedra sinica, Ganoderma lucidum, Hirsutella sinensis, Caulis spatholobi, aconite, and Bletilla striata were used as herbal medicine. Linggui zhugan-tang, Bofutsushosan, Shenling baizhu powder, Chowiseungcheng-tang, Daesiho-tang, and Yijin-tang were used as prescription. Conclusion Seventeen herbal medicines and six prescriptions associated with meaningful results in weight loss through changes in the gut microbiota, suggest the possibility of treatment and prevention of obesity through herbal medicine.

Comparing Gut Microbial Composition and Functional Adaptations between SPF and Non-SPF Pigs

  • Haesun Lee;Woncheoul Park;Jingu No;Nam Woong Hyung;Ju-Yeong Lee;Seokho Kim;Hyeon Yang;Poongyeon Lee;Eunju Kim;Keon Bong Oh;Jae Gyu Yoo;Seunghoon Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권7호
    • /
    • pp.1484-1490
    • /
    • 2024
  • The gut microbiota is a key factor significantly impacting host health by influencing metabolism and immune function. Its composition can be altered by genetic factors, as well as environmental factors such as the host's surroundings, diet, and antibiotic usage. This study aims to examine how the characteristics of the gut microbiota in pigs, used as source animals for xenotransplantation, vary depending on their rearing environment. We compared the diversity and composition of gut microbiota in fecal samples from pigs raised in specific pathogen-free (SPF) and conventional (non-SPF) facilities. The 16S RNA metagenome sequencing results revealed that pigs raised in non-SPF facilities exhibited greater gut microbiota diversity compared to those in SPF facilities. Genera such as Streptococcus and Ruminococcus were more abundant in SPF pigs compared to non-SPF pigs, while Blautia, Bacteroides, and Roseburia were only observed in SPF pigs. Conversely, Prevotella was exclusively present in non-SPF pigs. It was predicted that SPF pigs would show higher levels of processes related to carbohydrate and nucleotide metabolism, and environmental information processing. On the other hand, energy and lipid metabolism, as well as processes associated with genetic information, cell communication, and diseases, were predicted to be more active in the gut microbiota of non-SPF pigs. This study provides insights into how the presence or absence of microorganisms, including pathogens, in pig-rearing facilities affects the composition and function of the pigs' gut microbiota. Furthermore, this serves as a reference for tracing whether xenotransplantation source pigs were maintained in a pathogen-controlled environment.

Modification of Gut Microbiota and Immune Responses via Dietary Protease in Soybean Meal-Based Protein Diets

  • Song, Minho;Kim, Byeonghyeon;Cho, Jin Ho;Kyoung, Hyunjin;Choe, Jeehwan;Cho, Jee-Yeon;Kim, Younghoon;Kim, Hyeun Bum;Lee, Jeong Jae
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권7호
    • /
    • pp.885-891
    • /
    • 2022
  • Plant-based protein sources such as soybean meal have low digestibility and are generally promoted accumulation of undigested proteins into the intestine by enzymatic treatments. Moreover, potential intestinal pathogens ferment undigested proteins, producing harmful substances, such as ammonia, amines and phenols, leading to an overactive immune response and diarrhea in weaned pigs. As a solution, dietary proteases hydrolyze soybean-based antinutritive factors, which negatively affect immune responses and gut microbiota. In this study, we investigated the effects of dietary proteases (PRO) in a low-crude protein (CP) commercial diet on the immune responses and gut microbiota of weaned pigs. The experimental design consisted of three dietary treatments: a commercial diet as a positive control (PC; phase1 CP = 23.71%; phase 2 CP: 22.36%), a lower CP diet than PC as negative control (NC; 0.61% less CP than PC), and NC diet supplement with 0.02% PRO. We found that PRO tended to decrease the frequency of diarrhea in the first two weeks after weaning compared with PC and NC. In addition, pigs fed PRO showed decreased TNF-α and TGF-β1 levels compared with those fed PC and NC. The PRO group had a higher relative proportion of the genus Lactobacillus and lower levels of the genus Streptococcus than the PC and NC groups. In conclusion, the addition of PRO to a low CP commercial weaned diet attenuated inflammatory responses and modified gut microbiota in weaned pigs.

Effect of Probiotic-Fortified Infant Formula on Infant Gut Health and Microbiota Modulation

  • Ju Young Eor;Chul Sang Lee;Sung Ho Moon;Ju Young Cheon;Duleepa Pathiraja;Byeonghyeok Park;Min Jae Shin;Jae-Young Kim;Sangjong Kim;Youngbae Noh;Yunhan Kim;In-Geol Choi;Sae Hun Kim
    • 한국축산식품학회지
    • /
    • 제43권4호
    • /
    • pp.659-673
    • /
    • 2023
  • Compared to infant formula, breast milk is the best source of nutrition for infants; it not only improves the neonatal intestinal function, but also regulates the immune system and gut microbiota composition. However, probiotic-fortified infant formula may further enhance the infant gut environment by overcoming the limitations of traditional infant formula. We investigated the probiotic formula administration for one month by comparing 118 Korean infants into the following three groups: infants in each group fed with breast milk (50), probiotic formula (35), or placebo formula-fed group (33). Probiotic formula improved stool consistency and defecation frequency compared to placebo formula-fed group. The probiotic formula helped maintaining the level of secretory immunoglobulin A (sIgA), which had remarkably decreased over time in placebo formula-fed infants (compared to weeks 0 and 4). Moreover, probiotic formula decreased the acidity of stool and considerably increased the butyrate concentration. Furthermore, the fecal microbiota of each group was evaluated at weeks 0 and 4. The microbial composition was distinct between each groups, and the abundance of health-promoting bacteria increased in the probiotic formula compared to the placebo formula-fed group. In summary, supplementation of probiotic infant formula can help optimize the infant gut environment, microbial composition, and metabolic activity of the microbiota, mimicking those of breast milk.

Single-Cell Hemoprotein Diet Changes Adipose Tissue Distributions and Re-Shapes Gut Microbiota in High-Fat Diet-Induced Obese Mice

  • Seungki Lee;Ahyoung Choi;Kyung-Hoon Park;Youngjin Cho;Hyunjin Yoon;Pil Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권12호
    • /
    • pp.1648-1656
    • /
    • 2023
  • We have previously observed that feeding with single-cell hemoprotein (heme-SCP) in dogs (1 g/day for 6 days) and broiler chickens (1 ppm for 32 days) increased the proportion of lactic acid bacteria in the gut while reducing their body weights by approximately 1~2%. To define the roles of heme-SCP in modulating body weight and gut microbiota, obese C57BL/6N mice were administered varied heme-SCP concentrations (0, 0.05, and 0.5% heme-SCP in high fat diet) for 28 days. The heme-SCP diet seemed to restrain weight gain till day 14, but the mice gained weight again later, showing no significant differences in weight. However, the heme-SCP-fed mice had stiffer and oilier bodies compared with those of the control mice, which had flabby bodies and dull coats. When mice were dissected at day 10, the obese mice fed with heme-SCP exhibited a reduction in subcutaneous fat with an increase in muscle mass. The effect of heme-SCP on the obesity-associated dyslipidemia tended to be corroborated by the blood parameters (triglyceride, total cholesterol, and C-reactive protein) at day 10, though the correlation was not clear at day 28. Notably, the heme-SCP diet altered gut microbiota, leading to the proliferation of known anti-obesity biomarkers such as Akkermansia, Alistipes, Oscillibacter, Ruminococcus, Roseburia, and Faecalibacterium. This study suggests the potential of heme-SCP as an anti-obesity supplement, which modulates serum biochemistry and gut microbiota in high-fat diet-induced obese mice.

Fermented Milk Containing Lacticaseibacillus rhamnosus SNU50430 Modulates Immune Responses and Gut Microbiota in Antibiotic-Treated Mice

  • Sunghyun Yoon;SungJun Park;Seong Eun Jung;Cheonghoon Lee;Woon-Ki Kim;Il-Dong Choi;GwangPyo Ko
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권6호
    • /
    • pp.1299-1306
    • /
    • 2024
  • Antibiotics are used to control infectious diseases. However, adverse effects of antibiotics, such as devastation of the gut microbiota and enhancement of the inflammatory response, have been reported. Health benefits of fermented milk are established and can be enhanced by the addition of probiotic strains. In this study, we evaluated effects of fermented milk containing Lacticaseibacillus rhamnosus (L. rhamnosus) SNUG50430 in a mouse model with antibiotic treatment. Fermented milk containing 2 × 105 colony-forming units of L. rhamnosus SNUG50430 was administered to six week-old female BALB/c mice for 1 week. Interleukin (IL)-10 levels in colon samples were significantly increased (P < 0.05) compared to water-treated mice, whereas interferon-gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) were decreased, of mice treated with fermented milk containing L. rhamnosus SNUG50430-antibiotics-treated (FM+LR+Abx-treated) mice. Phylum Firmicutes composition in the gut was restored and the relative abundances of several bacteria, including the genera Coprococcus and Lactobacillus, were increased in FM+LR+Abx-treated mice compared to PBS+Abx-treated mice. Interestingly, abundances of genus Coprococcus and Lactobacillus were positively correlated with IL-5 and IL-10 levels (P < 0.05) in colon samples and negative correlated with IFN-γ and TNF-α levels in serum samples (P < 0.001). Acetate and butyrate were increased in mice with fermented milk and fecal microbiota of FM+LR+Abx-treated mice were highly enriched with butyrate metabolism pathway compared to water-treated mice (P < 0.05). Thus, fermented milk containing L. rhamnosus SNUG50430 was shown to ameliorate adverse health effects caused by antibiotics through modulating immune responses and the gut microbiota.

Comparison of the gut microbiota profile in breast-fed and formula-fed Korean infants using pyrosequencing

  • Lee, Sang A;Lim, Ji Ye;Kim, Bong-Soo;Cho, Su Jin;Kim, Nak Yon;Kim, Ok Bin;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • 제9권3호
    • /
    • pp.242-248
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Feeding in infancy is the most significant determinant of the intestinal microbiota in early life. The aim of this study was to determine the gut microbiota of Korean infants and compare the microbiota obtained between breast-fed and formula-fed Korean infants. SUBJECTS/METHODS: We analyzed the microbial communities in fecal samples collected from twenty 4-week old Korean (ten samples in each breast-fed or formula-fed) infants using pyrosequencing. RESULTS: The fecal microbiota of the 4-week-old Korean infants consisted of the three phyla Actinobacteria, Firmicutes, and Proteobacteria. In addition, five species, including Bifidocbacterium longum, Streptococcus salivarius, Strepotococcus lactarius, Streptococcus pseudopneumoniae, and Lactobacillus gasseri were common commensal intestinal microbiota in all infants. The predominant intestinal microbiota in the breast-fed infants (BFI) included the phylum Actinobacteria (average 70.55%), family Bifidobacteriacea (70.12%), genus Bifidobacterium (70.03%) and species Bifidobacterium longum (69.96%). In the microbiota from the formula-fed infants (FFI), the proportion of the phylum Actinobacteria (40.68%) was less, whereas the proportions of Firmicutes (45.38%) and Proteobacteria (13.85%) as well as the diversity of each taxonomic level were greater, compared to those of the BFI. The probiotic species found in the 4-week-old Korean infants were Bifidobacterium longum, Streptococcus salivarius, and Lactobacillus gasseri. These probiotic species accounted for 93.81% of the microbiota from the BFI, while only 63.80% of the microbiota from the FFI. In particular, B. longum was more abundant in BFI (69.96%) than in FFI (34.17%). CONCLUSIONS: Breast milk supports the growth of B. longum and inhibits others. To the best of our knowledge, this study was the first attempt to analyze the gut microbiota of healthy Korean infants according to the feeding type using pyrosequencing. Our data can be used as a basis for further studies to investigate the development of intestinal microbiota with aging and disease status.

Alteration of Lung and Gut Microbiota in IL-13-Transgenic Mice Simulating Chronic Asthma

  • Sohn, Kyoung-Hee;Baek, Min-gyung;Choi, Sung-Mi;Bae, Boram;Kim, Ruth Yuldam;Kim, Young-Chan;Kim, Hye-Young;Yi, Hana;Kang, Hye-Ryun
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권12호
    • /
    • pp.1819-1826
    • /
    • 2020
  • Increasing evidence suggests a potential role of microbial colonization in the inception of chronic airway diseases. However, it is not clear whether the lung and gut microbiome dysbiosis is coincidental or a result of mutual interaction. In this study, we investigated the airway microbiome in interleukin 13 (IL-13)-rich lung environment and related alterations of the gut microbiome. IL-13-overexpressing transgenic (TG) mice presented enhanced eosinophilic inflammatory responses and mucus production, together with airway hyperresponsiveness and subepithelial fibrosis. While bronchoalveolar lavage fluid and cecum samples obtained from 10-week-old IL-13 TG mice and their C57BL/6 wild-type (WT) littermates showed no significant differences in alpha diversity of lung and gut microbiome, they presented altered beta diversity in both lung and gut microbiota in the IL-13 TG mice compared to the WT mice. Lung-specific IL-13 overexpression also altered the composition of the gut as well as the lung microbiome. In particular, IL-13 TG mice showed an increased proportion of Proteobacteria and Cyanobacteria and a decreased amount of Bacteroidetes in the lungs, and depletion of Firmicutes and Proteobacteria in the gut. The patterns of polymicrobial interaction within the lung microbiota were different between WT and IL-13 TG mice. For instance, in IL-13 TG mice, lung Mesorhizobium significantly affected the alpha diversity of both lung and gut microbiomes. In summary, chronic asthma-like pathologic changes can alter the lung microbiota and affect the gut microbiome. These findings suggest that the lung-gut microbial axis might actually work in asthma.

Autism Spectrum Disorder and Eating Problems: The Imbalance of Gut Microbiota and the Gut-Brain Axis Hypothesis

  • Jiyoung Kim
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • 제35권1호
    • /
    • pp.51-56
    • /
    • 2024
  • This review explores the complexities of autism spectrum disorder (ASD), primarily focusing on the significant eating challenges faced by children and adolescents with this neurodevelopmental condition. It is common for individuals with ASD to exhibit heightened sensitivity to various sensory aspects of food such as taste, texture, smell, and visual appeal, leading to restricted and less diverse diets. These dietary limitations are believed to contribute to an imbalance in the gut microbiota. This review elaborates on how these eating problems, coupled with the distinctive characteristics of ASD, might be influenced by and, in turn, influence the gut-brain axis, a bidirectional communication system between the gastrointestinal tract and the brain. This discussion aims to shed light on the multifaceted interactions and potential implications of diet, gut health, and neurological development and function in children and adolescents with ASD.

발효커피가 사람장내미생물에 미치는 영향 (Effects of fermented coffee on human gut microbiota)

  • 고광표;김진경;조승화;정도연;운노 타쯔야
    • Journal of Applied Biological Chemistry
    • /
    • 제63권1호
    • /
    • pp.83-87
    • /
    • 2020
  • 발효식품은 장 건강을 포함하여 건강상의 이로운점을 제공하는 건강기능식품으로 인식되고 있다. 따라서 본 연구는 Lactobacillus plantarum과 Bacillus amyloliquefaciens로 발효 된 커피원두가 건강한 사람의 장내미생물 생태에 미치는 영향을 조사하였다. 커피원두를 발효하여 플라보노이드와 폴리페놀과 같은 이로운 물질이 증가하였다. 또한 발효커피의 섭취로 인해 유의한 장내 미생물생태 및 물질대사 변화가 관찰되지 않았지만, 섬유소 분해 및 단쇄지방산을 생성하는 유익한 미생물이 증가하였다. 본 연구 결과는 발효커피 섭취로인해 장내미생물생태 및 물질대사를 유지하면서 유익한 미생물이 증가하였음을 확인하였다.